
DecoderScript™
Reference Manual and User Guide

Revision Date: 1/30/2017

Copyright © 2017 Teledyne LeCroy, Inc.

DecoderScript, FTS, Frontline, Frontline Test System, ComProbe Protocol Analysis System and ComProbe are
registered trademarks of Teledyne LeCroy, Inc.

UltraEdit is a registered trademark of IDM Computer Solutions, Inc.

Visual C++.NET is a registered trademark of Microsoft Corp.

The Bluetooth SIG, Inc. owns the Bluetooth® word mark and logos, and any use of such marks by Teledyne LeCroy,
Inc. is under license.

All other trademarks and registered trademarks are property of their respective owners.

TELEDYNE LECROY

i DecoderScript ReferenceManual and User Guide

Contents

Chapter 1 DecoderScript Overview 1

Chapter 2 How the Decoder Processes Captured Data 3

2.1 Protocol Layers 3

2.2 Autotraversal 4

2.3 The Processing Sequence 5

Chapter 3 Structure of a Decoder 9

3.1 What You Need 11

3.2 Basic Structure 12

3.2.1 The Header Section 12

3.2.2 The Reference Section 13

3.2.3 DECODE 14

3.2.4 The Table Section 14

3.2.5 The Executable Section 14

3.3 Fictitious Protocol 15

3.3.1 The Basic Structure of a Decoder 17

3.3.2 The FIELD Statement 18

3.4 General Syntax Rules 18

3.4.1 Standard Methods 19

3.4.2 Verify Field Values 20

3.4.3 Creating Summary Pane Columns Using IN_SUMMARY 21

3.4.4 Tables 22

3.4.5 The Group Statement 24

3.4.6 Conditional Statements 26

3.4.7 Branch Statement 28

3.4.8 SUPPRESS_DETAIL and NO_MOVE 30

3.4.9 The GROUP FIELD and RESERVED Statements 31

3.4.10 START_BIT 32

3.4.11 Comments 33

3.5 Finished Fictitious Protocol Decoder 33

Chapter 4 Putting It All Together 37

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide ii

4.1 Decoder IDs 37

4.1.1 Encrypted Decoders 37

4.1.2 Plain Text Decoders 37

4.2 [ProtocolName].personaility Files 37

4.2.1 Rules 38

4.2.2 Predefined Stacks 39

4.2.3 Port Assignments 40

4.2.4 Filters 40

4.3 What to Send to End Users 41

Chapter 5 DecoderScript Reference 43

5.1 SUPPORTED_SPEC_VERSION 43

5.2 BYTE_STREAM_FRAMER 43

5.3 FRAME_AFTER_DECODING 44

5.4 FRAME_BEFORE_DECODING 44

5.5 NEXT_PROTOCOL 44

5.6 NEXT_PROTOCOL_SIZE 44

5.7 NEXT_PROTOCOL_OFFSET 44

5.8 PAYLOAD_IS_BYTE_STREAM 44

5.9 PREPROCESSING 45

5.10 POSTPROCESSING 45

5.11 RECOGNIZER 45

5.12 SUMMARY_COLUMNS 46

5.13 FIELD 49

5.13.1 field_name 50

5.13.2 SizeMethod 50

5.13.3 FormatMethod 51

5.13.4 detail_tag 51

5.13.5 START_BIT, StartBitMethod 51

5.13.6 Conditional Clause 51

5.13.7 <Retrieve-Clause> 52

5.13.8 <Processing-Clause> 53

TELEDYNE LECROY

iii DecoderScript ReferenceManual and User Guide

5.13.9 ALSO FormatMethod 54

5.13.10 ALSO Verify Method 54

5.13.11 IN_SUMMARY "summary_tag" Column Width 54

5.13.12 SUPRESS_DETAIL 54

5.13.13 <Tag-Clause> 54

5.13.14 MARGIN_TEXT FormatMethod 55

5.13.15 INFO 55

5.13.16 NO_MOVE 55

5.13.17 HOST_DATA_ORDER | NETWORK_DATA_ORDER 55

5.13.18 <Verify-Clause> 55

5.13.19 <Store-Clause> 56

5.14 Field Order of Statement Processing 57

5.15 FIELD field_name; 58

5.16 RESERVED 58

5.17 GROUP 58

5.17.1 REPEAT COUNT | SIZE | TRUNCATED_FIELD_OK | UNTIL Method 59

5.17.2 Detail Tag 60

5.17.3 GROUP FIELD 61

5.18 BRANCH 62

5.19 PARAMETER 63

5.20 INCLUDE 65

5.21 INCLUDE_IF_EXISTS 65

5.22 END_MAIN_PATH 65

5.23 Intra-Frame and Inter-Frame Data 65

5.23.1 Intra-Frame Data 65

5.23.2 Inter-Frame Data 66

Chapter 6 Methods 69

6.1 Boolean Methods 69

6.2 BranchMethods 69

6.3 FormatMethods 69

6.4 NextProtocol Methods 70

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide iv

6.4.1 NextProtocol 70

6.4.2 NextProtocolOffset 70

6.4.3 NextProtocolSize 70

6.5 RetrievalMethods 71

6.6 Size Methods 71

6.7 StartBit Methods 71

6.8 Tag Methods 71

6.9 Verify Methods 71

6.9.1 Checksum/CRC Methods 71

6.9.2 Field-Validation Methods 72

6.10 A Method Sample 72

6.11 The Method Context 73

6.12 Notation for Constant/Variable Names 73

6.13 CString and CArray Objects 74

6.14 Method Inputs 74

6.14.1 Method Input Definitions 75

6.14.2 Method Input by Method Type 78

6.14.2.1 Boolean Method Inputs 78

6.14.2.2 Branch Method Inputs 79

6.14.2.3 ByteStreamFramer Method Inputs 80

6.14.2.4 FormatMethod Inputs 81

6.14.2.5 FrameTransformer Method Inputs 83

6.14.2.6 NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size) 84

6.14.2.7 PostProcessing Methods Inputs 85

6.14.2.8 PreProcess Method Inputs 86

6.14.2.9 Processing Method Inputs 86

6.14.2.10 Retrieval Method Inputs 88

6.14.2.11 Size Method Inputs 89

6.14.2.12 StartBit Method Inputs 90

6.14.2.13 Verify Method Inputs 91

6.14.3 Redundancies in Input Values 92

TELEDYNE LECROY

v DecoderScript ReferenceManual and User Guide

6.14.4 Truncated Frame 92

6.14.5 The Current Field 93

6.15 Other Resources 93

6.15.1 Miscellaneous Functions 93

6.16 Defining A Method 94

6.16.1 ParameterTypes 95

6.17 Output Values 95

6.18 Method Contexts and Examples 96

6.18.1 Boolean Methods 97

6.18.2 Branch Methods 98

6.18.3 Byte Stream Framer Methods 98

6.18.4 FormatMethods 99

6.18.5 NextProtocol Methods 99

6.18.6 NextProtocolOffset and NextProtocolSize Methods 100

6.18.7 PREPROCESSING, PROCESSING, and POSTPROCESSINGMethods 100

6.18.8 Retrieval Methods 100

6.18.9 Size Methods 100

6.18.10 StartBit Methods 101

6.18.11 Tag Methods 101

6.18.12 Verify Methods 102

6.19 Programming Exceptions 102

6.20 Common 103

6.20.1 Loading External Data Into Common 103

6.21 Where Do Custom Methods Reside? 104

6.22 How Does a Custom Method Get Compiled? 104

Chapter 7 Frame Recognizers 105

7.1 Recognizer Syntax 105

7.1.1 Input Values 106

7.1.2 Return Values 107

7.1.3 Parameters 108

7.1.4 Error Processing 108

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide vi

7.2 Efficiency 108

7.3 The Simplest Recognizer: Half Duplex 108

7.4 A Frame Recognizer for FP 109

7.5 Handling Signal-Change Events 112

7.6 Handling Error (DRF, or Data Related Flag) Events 113

7.7 Handling Timer Events 113

7.8 Loose Ends 114

7.9 Frame Recognizers Included with Protocol Analyzer 114

Chapter 8 Frame Transformers 117

8.1 A Frame Transformer for FP 118

8.2 Output Variables 119

8.2.1 Examples of ausLowIndex and ausHighIndex 120

Chapter 9 Decoder Data Objects 123

9.1 Understanding How a Decoder Process Affects Data Objects 123

9.1.1 Compilation Phase 124

9.1.2 Reconstruction Phase 124

9.1.3 Implications of Phases 125

9.1.4 Ways to Share Data at Different Points of the Decoding Process 125

9.2 Decoder Data Object Syntax 126

9.2.1 Variables Available to Data Decoder Objects 127

9.3 Using Decoder Data Objects for per-Frame Data 128

9.3.1 A class to make saving and retrieving easier and more compact 130

9.4 Error Processing 131

9.5 Writing Methods that Use Decoder Data Objects 131

9.5.1 Multiple Statics and Constants 132

9.6 A Simple Example 133

9.7 A Complex Example 135

9.8 A Primer on FRM File 138

9.8.1 Compilation 138

9.8.2 Reconstruction 139

9.8.3 So...When Are Methods Called? 139

TELEDYNE LECROY

vii DecoderScript ReferenceManual and User Guide

9.8.4 What Phase Am I In? 140

9.8.5 Protocol Example 140

9.8.6 Some Techniques 144

Chapter 10 Tips and Tricks 147

10.1 Approach to Decoding a Field 147

10.2 Empty Frames 147

10.3 Red Items in the Summary Pane 147

10.4 How Field Values are Stored 148

10.5 A Subtle Difference Between GROUP and GROUP FIELD 148

10.6 Large Fields 148

10.7 Error Correcting in GROUP REPEAT Constructions 148

10.8 How to Implement a Repeating Counter 149

10.9 Recalcitrant Summary Columns 149

10.10 Overwriting Summay-Pane Column Entries 150

10.11 Readable Protocols 150

10.12 Using Variables 150

10.13 Storing Data 151

10.14 Storing Data Into Decoder Data Objects 151

10.15 Adding on to Frontline Decoders 152

10.16 Decoder Event Logging 154

10.16.1 Handling 128-bit UUIDs 156

Chapter 11 One Complete Example 159

Chapter 12 A Formal Grammar for Decoder Scripts 169

Appendix A: Decoder Summary 175

Appendix B: Using Protocol Analyzer wtih the Option for Creating Decoders 176

B.1 Reload Decoders 176

B.2 Building Methods 176

B.3 How to Insert Fictitious Protocol into a Fictitious Product 176

Appendix C: KeyWord List 180

Appendix D: Creating Custom Frame Recognizer 184

Appendix E: Method Reference 186

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide viii

E.1 Group Boolean 186

E.1.1 Check_CrcCCITTrevDataBytes 186

E.1.2 CompareFields 186

E.1.3 CurrentDataMatches 187

E.1.4 DCE 188

E.1.5 DTE 188

E.1.6 FieldIs 188

E.1.7 FieldIsBetween 189

E.1.8 FieldLengthIs 190

E.1.9 IndexedPersistentStaticExists 190

E.1.10 IntraframeStaticExists 191

E.1.11 IsInTable 191

E.1.12 IsOdd 191

E.1.13 IsProbablyAtType 192

E.1.14 MatchTableData 192

E.1.15 MoreBytes 193

E.1.16 MoreBytesInSegement 193

E.1.17 MoreBytesToDecode 194

E.2 Group: Branch 195

E.2.1 DTEorDCE 195

E.2.2 FromTable 195

E.2.3 PersistentStaticExists 196

E.3 Group: FORMAT 197

E.3.1 Binary 197

E.3.2 Constant 197

E.3.3 Decimal 198

E.3.4 DecimalWithFieldLabel 198

E.3.5 DOSDate 199

E.3.6 DOSTime 199

E.3.7 Double 200

E.3.8 Float 200

TELEDYNE LECROY

ix DecoderScript ReferenceManual and User Guide

E.3.9 Hex 200

E.3.10 IPAddress 201

E.3.11 MacAddress 201

E.3.12 mdp11703 202

E.3.13 MillisecondsFrom1970 202

E.3.14 NetBiosName 202

E.3.15 Octal 203

E.3.16 OtherField 203

E.3.17 Scale 204

E.3.18 SecondsFrom1970 204

E.3.19 StringOfHex 205

E.3.20 StringOfAscii 205

E.3.21 StringOfBCD 205

E.3.22 StringOfBinary 206

E.3.23 StringOfDecimal 206

E.3.24 StringOfUnicode 207

E.3.25 StringOfUTF8 207

E.3.26 Table 207

E.3.27 UUID 208

E.4 Group: FRAME_TRANSFORMER 209

E.4.1 RealignOnByteBoundary 209

E.4.2 StripDoubledChar 209

E.5 Group: NEXT_PROTOCOL 210

E.5.1 FromField 210

E.5.2 FromPortAssignment 210

E.5.3 IsAlways 210

E.6 Group: NEXT_PROTOCOL_SIZE 212

E.6.1 FromField 212

E.6.2 FromFieldIfLessThan 212

E.6.3 OffsetToEnd 212

E.6.4 OffsetToEndTakesFieldParam 213

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide x

E.6.5 ThisLayerLength 213

E.7 Group: POSTPROCESSING 215

E.8 Group: PREPROCESSING 216

E.8.1 InitField 216

E.9 Group: PROCESSING 217

E.9.1 AddPortAssignment 217

E.10 Group: RETRIEVING_DATA 218

E.10.1 AddField 218

E.10.2 AddFieldToField 218

E.10.3 AddFieldToInteger 218

E.10.4 AddInteger 219

E.10.5 AddIntegerToField 219

E.10.6 AndMask 219

E.10.7 BitOffset 220

E.10.8 ClearPersistentField 220

E.10.9 DivideField 220

E.10.10 DivideFieldByField 221

E.10.11 DivideFieldByInteger 221

E.10.12 DivideInteger 221

E.10.13 DivideIntegerByField 222

E.10.14 FromFlag 222

E.10.15 FromFlags 222

E.10.16 IndexedPersistentField 223

E.10.17 IndexedPersistentFieldAndDelete 223

E.10.18 IntraframeField 224

E.10.19 ModuloInteger 224

E.10.20 ModuloField 224

E.10.21 ModuloFieldByField 225

E.10.22 ModuloFieldByInterger 225

E.10.23 ModuloIntergerByField 225

E.10.24 MultiplyField 226

TELEDYNE LECROY

xi DecoderScript ReferenceManual and User Guide

E.10.25 MultiplyFieldByField 226

E.10.26 MultiplyFieldByInteger 227

E.10.27 MultiplyInteger 227

E.10.28 MultipyIntergerByField 227

E.10.29 OrMask 228

E.10.30 PersistentField 228

E.10.31 ReplaceWithExtraData 228

E.10.32 ShiftLeft 229

E.10.33 ShiftRight 229

E.10.34 SignExtension 230

E.10.35 SplitField 230

E.10.36 StoreField 230

E.10.37 StoreIndexedPersistentField 231

E.10.38 StoreInteger 232

E.10.39 StoreIntraframeField 232

E.10.40 StorePersistentField 232

E.10.41 SubtractField 233

E.10.42 SubtractFieldMinusField 233

E.10.43 SubtractFieldMinusInteger 234

E.10.44 SubtractInterger 234

E.10.45 SubtractIntegerMinusField 234

E.11 Group: SIZE 236

E.11.1 ArrayOf 236

E.11.2 Bit 236

E.11.3 Byte 236

E.11.4 Fixed 236

E.11.5 FixedUpTo 238

E.11.6 FromExtraData 239

E.11.7 FromField 240

E.11.8 MinFieldOrEndOfLayer 241

E.11.9 OddTerminated 242

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide xii

E.11.10 OneToken 242

E.11.11 RelativeFromField 242

E.11.12 String 243

E.11.13 ToEndOfLayer 243

E.11.14 ToTerminatingValue 244

E.11.15 UnicodeString 244

E.11.16 UpTo 244

E.11.17 Zero 246

E.12 Group: START_BIT 247

E.12.1 FromEnd 247

E.12.2 FromEndSizeFromField 247

E.12.3 FromStart 248

E.12.4 Move 249

E.12.5 MoveAbsoluteFromField 250

E.12.6 MoveRelativeFromField 251

E.12.7 MoveToField 251

E.12.8 MoveToFieldPlusOffset 251

E.12.9 NextByteBoundary 252

E.12.10 NextWordBoundary 252

E.12.11 PreviousByteBoundary 252

E.13 Group: TAG 254

E.13.1 TAG 254

E.14 Group: VERIFY 255

E.14.1 Check_Crc802153MacHcs 255

E.14.2 Check_CrcCCITTrevDataBytes 255

E.14.3 Check_CrcCRC16 256

E.14.4 Check_CrcCRC16Rev 256

E.14.5 Check_CrcCRC16RevAndInvert 257

E.14.6 Check_CrcCRC32 257

E.14.7 Check_CrcHDLC 258

E.14.8 Check_CrcHDLCerr 258

TELEDYNE LECROY

xiii DecoderScript ReferenceManual and User Guide

E.14.9 Check_CrcLRC 258

E.14.10 Check_CrcModBus 259

E.14.11 Check_CrcModBus_LRC 259

E.14.12 Check_CrcSum 260

E.14.13 Check_CrcSum1Comp 260

E.14.14 Check_CrcSum2Comp 261

E.14.15 Check_CrcXOR1Comp 261

E.14.16 Check_CrcXOR2Comp 262

E.14.17 CompareFields 262

E.14.18 Fail 263

E.14.19 FieldIs 263

E.14.20 FieldIsBetween 264

E.14.21 FieldLengthIs 265

E.14.22 HdlcFcs 266

E.14.23 IsInTable 267

E.14.24 IsLengthOfLayer 267

E.14.25 MatchTableData 268

E.14.26 TcpChecksum 269

Appendix F: Extending Frontline Decoders 270

F.1 Extending Frontline Products 270

F.1.1 Extending Frontline Products 270

F.1.2 Step 1: Open the Hello Bluetooth® capture file in ComProbe analyzer 271

F.1.3 Step 2: Remap the handling of the Hello Bluetooth® Service UUID 273

F.1.4 Step 3: Remap the handling of the User Name UUID 273

F.1.5 Where can we go from here? 274

F.2 Handling 128-bit UUIDs 274

F.3 Case Study: Extending Frontline ATT Decoder for a Fixed Configuration Service 276

F.3.1 Background 276

F.3.2 Problem: 276

F.3.3 Solution: 276

F.3.4 Procedure 277

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide xiv

Figures

Figure 2.1 - Protocol Layer Diagram 4

Figure 2.2 - Frame Processing Flow Chart 7

Figure 3.1 - Frame Display 10

Figure 3.2 - Set Actuator Command and Response 16

Figure 3.3 - Set Actuator Command 20

Figure 3.4 - How Errors Are Displayed 20

Figure 3.5 - Illustration of Master Sending Twice 22

Figure 3.6 - HEX 23

Figure 3.7 - From Table 23

Figure 3.8 - Unlabeled vs Labeled GROUPs 24

Figure 3.9 - GROUP FIELD Collapsed and Expanded 32

Figure 5.1 - GROUP with Detail Tag 60

Figure 5.2 - GROUP without Detail Tag 60

Figure 5.3 - Bit Flags with GROUP FIELD 62

Figure 5.4 - GROUP FIELD from Table 62

Tables

Table 3.1 - Contents of Frame Display 11

Table 3.2 - Command Code Data Format 15

Table 3.3 - Response Code Data Format 16

Table 3.4 - Response Bit Flag 16

Table 5.1 - Data Length for Field Values 57

Table 6.1 - NextProtocol Methods 70

Table 6.2 - Boolean Method Inputs 78

Table 6.3 - Branch Method Inputs 79

Table 6.4 - ByteStreamFramer Method Inputs 80

Table 6.5 - FormatMethod Inputs 81

Table 6.6 - FrameTransformer Method Inputs 83

Table 6.7 - NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size) 84

Table 6.8 - PostProcessing Methods Inputs 85

TELEDYNE LECROY

xv DecoderScript ReferenceManual and User Guide

Table 6.9 - PreProcessing Methods Inputs 86

Table 6.10 - Processing Method Inputs 86

Table 6.11 - Retrieval Method Inputs 88

Table 6.12 - Size Method Inputs 89

Table 6.13 - StartBit Method Inputs 90

Table 6.14 - Verify Method Inputs 91

Table 6.15 - General Utility Functions 93

Table 6.16 - Method Paramete Types 95

Table 6.17 - Output Variable for Each Method Type 95

Table 7.1 - nerReason enum 106

Table 7.2 - Input Values 107

Table 7.3 - Return Values 107

Table 7.4 - ComProbe Driver 113

Table 7.5 - Asynchronous Serial Driver 113

Table 7.6 - RS232 ComProbe II Driver 113

Table 7.7 - Recognizer Names 114

Table 9.1 - Variables Available 127

Table 9.2 - nerReason enum 128

Table 9.3 - Method Type and Phase of Use 139

Table 10.1 - Protocols That Accept Custom Attributes 153

Table 10.2 - Event Logging Results 155

Table C.1 - Key Words with Descriptions 180

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide xvi

Chapter 1 DecoderScript Overview
The DecoderScript™ Reference Manual and User Guide is delivered with each Frontline ComProbe® Protocol
Analysis System installation package under Developer Tools. The manual is also available on-line at FTE.com.

The main purpose of this manual is to describe DecoderScript™, the language used in writing decoders.
DecoderScript allows you to create new decoders or modify existing decoders to expand the functionality of your
ComProbe protocol analyzer. DecoderScript displays protocol data, checks the values of fields, validates
checksums, converts and combines field values for convenient presentation. Decoders can also be augmented
with custom C++-coded functions, called "methods", to extend data formatting, validation, transformations, and so
on.

A decoder defines field-by-field how a protocol message can be taken apart and displayed. The core of each
"decoder" is a program that defines how the protocol data is broken up into fields and displayed in the Frame
Display window of the analyzer software.

This manual provides instruction on how to create and use custom decoders. When reading the manual for the
first time, we encourage you to read the chapters in sequence. The chapters are organized in such a way to
introduce you to DecoderScript writing step- by- step.

Screenshots of the ComProbe protocol analyzer have been included in the manual to illustrate what you see on
your own screen as you develop decoders. But you should be aware for various reasons, the examples may be
slightly different from the ones that you create. The differences could be the result of configuration differences or
because you are running a newer version of the program. Do not worry if an icon seems to be missing, a font is
different, or even if the entire color scheme appears to have changed. The examples are still valid.

Examples of decoders, methods, and frame recognizers are included in this manual. You can cut and paste from
these examples to create your own decoders.

A quick note here: Usually the pasted code appears the same as the original in your editor. Some editors,
however, change the appearance of the text when it is pasted (something to do with whether it is ASCII or
Unicode text). If you find that the pasted text does not appear the same as the original, you can transfer the code
into a simple text editor like Notepad, save it as an ANSI (ASCII) file, then use it in your decoder.

These files are installed in the FTE directory of the system Common Files directory. The readme file in the root
directory of the protocol analyzer installation contains a complete list of included files. Most files are located in My
Decoders and My Methods.

DecoderScript ReferenceManual and User Guide 1

http://fte.com/support/supportdocs.aspx

We will be updating our web site with new and updated utilities, etc, on a regular basis and we urge decoder
writers to check there occasionally.

TELEDYNE LECROY Chapter 1 DecoderScript Overview

2 DecoderScript ReferenceManual and User Guide

Chapter 2 How the Decoder Processes Captured Data
In this chapter, we describe how captured data gets from where the protocol analyzer collects it to the point
where you see each protocol layer decoded on your screen. If you understand how a protocol analyzer works,
you can skip this chapter and move to Chapter 3. If you don't understand how data is captured and analyzed or if
you want a quick refresher, it would be a good idea to read through this chapter.

2.1 Protocol Layers
Now let us look at what lies within a frame.

Generally, network communication is performed using protocol stacks. The most popular stack is the IP or
Internet stack. Others include the Netware Stack and IBM's SNA. When data is transmitted, it is passed down
through a stack of agents. Each agent is responsible for managing certain communication functions such as making
sure the data is sent to the right place, ensuring it arrives intact, ensuring that shipments are delivered in the right
order, and so on. In order to accomplish its designated tasks, each agent prepends its own protocol header to the
data and then passes it down to the agent at the next layer. Some agents add a trailer as well, typically to hold a
CRC or other frame check. Generally, the higher-layer agents are implemented in software and the lower-layer
ones in hardware. On receipt, the opposite happens: each layer's agent strips off its own protocol header (and
trailer if there is one) and then passes what remains to the appropriate agent at the next layer up.

So what we find inside a frame is a sequence of protocol layers. We have a very specific use for the term "layer":
it refers to such a protocol layer within a frame. From this point on in this manual we will use "layer" strictly and
solely in this sense. Or, if we do use it in another sense, then we will make that very clear in the context.

If you are familiar with the term layer as used in the ISO seven-layer model then we must emphasize that our
meaning, while certainly related, is significantly different. Most important is that we use the word without any
implication as to functionality. We do not assume, for example, that if the first layer is a data-link layer then the
second layer must be a network layer. If people want to use a data-link protocol on top of a presentation-level
protocol, or a zeeblonking protocol over a freezewhacking one, it is all the same. In other words, the protocol
analyzer does not care what your protocols do or how they are arranged - it just decodes them. Indeed, thanks to
practices like encapsulation and tunneling, it is quite legitimate to see a frame that contains protocols layered like
the one on Protocol Layer Diagram on page 4.

How protocols are layered is not important to the protocol analyzer. The analyzer needs to know the beginning
and ending of each layer and the protocol used at each layer. Knowing where each layer begins and ends is easy

DecoderScript ReferenceManual and User Guide 3

because, in most cases, one layer begins immediately after the header of the previous layer and continues to the
end of the frame. We have ways of handling exceptions such as when there is padding in front of a layer.

Determining the protocol used at each layer is generally easy as well. For a start, the first layer is usually fixed. As
for the rest, in some cases there is a fixed sequence. In most other cases the header of one layer includes
information that identifies the protocol at the next layer.

The Protocol Layer Diagram on page 4 also serves to illustrate what we mean by "layer", "header" and "payload".
A protocol header contains control information and is what the decoder for the protocol primarily decodes. The
data carried by the protocol is called its payload. Generally, the payload of one layer comprises the next layer.
Matters get a little more complicated when trailers are involved; then the payload of a protocol starts after the
header and continues only up to the trailer, not to the end of frame.

Figure 2.1 - Protocol Layer Diagram

There are communication links on which only one protocol is used. This would be the case when a protocol such
as ZMODEM or Kermit is used in isolation. Then, we would say, the stack is one-layer deep and that a frame and a
layer are essentially the same (unless there happens to be padding at the end of the frame).

2.2 Autotraversal
Autotraversal is the ability of the protocol analyzer to automatically manage the transition from one protocol layer
to another. It depends on a number of factors including predefined stacks and elements in decoders that identify
which protocol comes next as the sequence of layers is decoded.

We have said a great deal about layers because it is important to gain a perspective on how the protocol analyzer
operates. In practice though, when writing a decoder you are working within the realm of a single protocol and
only need to be concerned about other layers in a couple of small and well defined contexts.

How data is divided up into frames depends on the type of communication source involved. With Ethernet, the
job is done by the hardware; the Ethernet adapter sends the data to the protocol analyzer a whole frame at a
time. (That, by the way, explains why every byte in an Ethernet frame ends up with the same timestamp). With
bit-synchronous protocols like HDLC, the hardware also does the work, but in a different way: The receiving

TELEDYNE LECROY Chapter 2 How the Decoder Processes Captured
Data

4 DecoderScript ReferenceManual and User Guide

hardware passes data to the protocol analyzer a byte at a time with other signals interspersed to denote where
frames begin and end. (In some cases, both with Ethernet and bit-synchronous links, the hardware also verifies
the CRC on the frame). Finally, there are cases where the hardware is oblivious to framing and the job must be
done by software. Examples are byte-synchronous protocols such as Bisync and asynchronous protocols such as
PPP and SLIP.

If this business of splitting captured data into frames remains unclear to you, then picture the data bytes as
shipping containers. Then, in place of frames, think of shipments - a shipment is a batch of containers that are
associated in some way and sent together. Just as with data, containers can be shipped in a variety of ways: by
ship, truck/lorry, and railway at least. Then the Ethernet case is similar to containers being sent by rail. From an
external viewpoint at least, each frame is like a train. It is very clear where one train ends and the next begins -
even if trains run together, you have a locomotive on the front and a caboose/guard's van on the end of each. The
other cases are analogous to containers being shipped by road - let us make it a one-lane road because the
bytes/containers must arrive in the same order that they were sent in. Then how do we tell where one shipment
ends and another starts? In the bit-synchronous case, we insert some special containers between shipments to
serve as markers, or flags. These could literally have flags attached to them or they could be painted a unique
color. In any case the shipper will have no trouble sorting out the shipments. In the asynchronous case, there are
no external clues - one has to look inside the containers to divide up the shipments. Therefore, the job typically
falls to the customer (the software) rather than to the shipper (the hardware).

There are many reasons why this is far from a perfect analogy. We just hope it will help you comprehend
different aspects of protocol decoding. In some cases, special software usually protocol-specific software, is
required to take care of what we call "frame recognition". When the task of frame recognition falls to software,
we call that software a Frame Recognizer.

2.3 The Processing Sequence
We outline the major processing sequence the protocol analyzer uses to process data. An appreciation of these
steps is vital to understanding certain aspects of protocol decoding.

The Processing Sequence image illustrates this sequence.

At the top, captured data is fed through a Frame Recognizer if required. Once that is done we can view the
capture as a sequence of frames awaiting decoding. The rest of the diagram traces the processing of a single
frame.

The first step in processing a frame is to feed it through the Frame Transformer to prepare it for decoding, if such
is required.

The second step, which like the first is optional, is to pass the frame to a Preprocessor Method. We have not
mentioned these before because preprocessors are seldom used.

Preprocessors can do two things. They can set up inter-frame data and initialize fields.

The next step is to run the decoder and display the results in the protocol analyzer Frame Display window.

After decoding, a Postprocessor method may be run. Like preprocessors, post processors are rarely used. One
example is provided by the decoder for Van Jacobson compressed headers (VJC.DEC) which uses a postprocessor
to store inter-frame data.

The next step in the flow may involve the invocation of one or more methods that help set things up for working
with the next protocol layer. Specifically they may determine what protocol is used, where the layer starts and
how long it is. When the next protocol can vary (i.e. when it is not fixed in the stack definition that the user has
specified) then a NextProtocol Method must be provided. This dynamically figures out what protocol comes at the
next layer. If the next protocol is fixed in the stack definition then any NextProtocol Method specified in the
decoder is ignored. By default, the next layer is assumed to start immediately after the current one and either

Chapter 2 How the Decoder Processes Captured
Data

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 5

extend to the end of the frame or define its own length. If there is padding or a gap before the next layer then a
NextProtocolOffset Method must be supplied; its job is to determine how many bits must be skipped. Finally,
when the next layer does not extend to the end of the data, a NextProtocolSize Method is required to calculate
the length of the next layer. Note that if a NextProtocolOffset or a NextProtocolSize method is defined then it is
always invoked even if the NextProtocol Method is not.

The next step is the optional processing of the frame by another Frame Transformer method. It rarely happens
that frame modification is needed at this stage but it can be appropriate if the current decoder needs to make any
adjustments before the next decoder gets hold of it. You can see examples in the decoders for Van Jacobson
headers (VJC.DEC and VJU.DEC). VJU replaces the byte that specifies that the frame should be saved for VJC with a
value indicating that the next protocol is TCP. This allows the VJU frame to look just like an IP frame so the
standard IP decoder can be invoked. VJC takes the saved IP header from the VJU frame decoded earlier, modifies
it, and then creates an entirely new frame with that and the rest of the payload from the current frame, and
passes that back as the new frame to use.

The final job is to check if the end of the frame has been reached. If it has then the decoding of the frame is
complete. Otherwise we loop back and start processing the next layer.

TELEDYNE LECROY Chapter 2 How the Decoder Processes Captured
Data

6 DecoderScript ReferenceManual and User Guide

Figure 2.2 - Frame Processing Flow Chart

Chapter 2 How the Decoder Processes Captured
Data

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 7

8 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 2 How the Decoder Processes Captured
Data

Chapter 3 Structure of a Decoder
Our aim is to acquaint you with the most essential elements of DecoderScript and leave you with sufficient
expertise so that you can write decoders of your own.

We will begin with a short basic overview of DecoderScript:

ComProbe turns this…

Stream of bytes

…into this:

DecoderScript ReferenceManual and User Guide 9

Figure 3.1 - Frame Display

To do this, ComProbe software uses a set of instructions called a decoder. A decoder is written in a language
called DecoderScript

Here's the decoder, written in DecoderScript, that creates the Frame Display screen shown above:

// Copyright Monday, January 30, 2017 Frontline Test Equipment, Inc. All rights reserved.
"MyProtocol" 0x7f00fff7
DECODE
FIELD secs (Fixed 1 Byte) (Decimal) "Seconds"
FIELD distance (Fixed 1 Byte) (Decimal) "Distance"
END_MAIN_PATH

This is a very simple example which illustrates some very fundamental capabilities of DecoderScript.

The FIELD statements define the contents of the Frame Display. The first statement breaks down like this:

TELEDYNE LECROY Chapter 3 Structure of a Decoder

10 DecoderScript ReferenceManual and User Guide

Item Description
Field Keyword that identifies the beginning of a field statement

secs Identifier of field definition statement.

(Fixed 1) Fixed is a sizemethod and defines the size of the field.

(Decimal) Formats the output to be displayed in decimal format.

"Seconds" Display the value in the detail pane (lower-left corner of FrameDisplay) with the label
"Seconds"

Table 3.1 - Contents of FrameDisplay

The decoder starts with a name ("MyProtocol" in this name that appears on the tab in Frame Display) and a value
called a decoder ID. Each decoder must have a unique decoder ID.

To see the decoder above in action, do the following:

1. Type the entire decoder into a file called mp.dec.

2. Put file mp.dec into directory C:\Documents and Settings\All Users\Documents\Frontline Test
Equipment\My Decoders.

3. Run ComProbe software and do either a live capture or open a capture file.

4. Open the Frame Display and do the following:

l Select the Optionsmenu

l SelectProtocol Stack…

l Select __Build Your Own__

l Press the Next button twice

l Remove all entries from the Protocol Decode Stack list by selecting them and pressing the left
arrow button.

l Add the contents of mp.dec by selecting MyProtocol in the box on the left and pressing the right arrow
button.

l Press the Finish button.

l In the Frame Display you will now see the packets decoded by your mp.dec decoder. It will appear
onMyProtocol tab with the data decoded

l To futher build on our short version of decoderscript writing, we will now begin to explain in a little
more detail.

3.1 What You Need
In order to write a decoder, you need these things:

1. You need the protocol specification. The specification helps you identify how the protocol should work.

2. You need data. Data can be captured live using your ComProbe Software protocol analyzer, or it can be
created using CFA Maker, a utility for creating capture files. The raw material that the protocol analyzer

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 11

works with is the captured data. We refer to the contents of a capture file as events. These events
comprise not only the actual data bytes, but also start- and end-of-frame markers, and indications of
changes in control signals (e.g. DTR, RTS, etc., in the RS-232 case). An event may contain several pieces of
information including a timestamp and a record of errors (parity, framing, etc.).

3. You need to be able to separate your data into frames. By "frame", we mean the fundamental protocol
package that is sent and received. There are three ways to frame data:

Alternative 1:

Hardware can frame the data for you. In most cases where the hardware is able to frame the data, your
protocol is likely not the lowest layer protocol in the stack, but is somewhere higher with other protocols
beneath it. Examples of protocols with this scenario would be Ethernet and some kinds of synchronous
serial data.

Alternative 2

A soft frame recognizer can also frame data. The recognizer inserts flags at the beginning and end of
frames. Asynchronous and some synchronous serial data are examples of data that will need to use a
frame recognizer. A frame recognizer is provided by the protocol analyzer

Alternative 3

If you need to write a custom recognizer, then you need Microsoft's Visual C++ 2008 (known also as Visual
C++ 9.0) installed on your PC and a text editor in which to write your method. We strongly recommend
that you use version 9.0 of MS Visual C++. This product uses the Visual C++ compiler to compile your
recognizer - you do not need to compile it yourself.

4. Decode your data. You will need a text editor. We use a shareware tool called UltraEdit because it can do
syntax highlighting and this makes DecoderScript much easier to read, but any program that lets you create
text files will work. UltraEdit is available from www.ultraedit.com, and we have included
‘decoderscript.uew’ and ‘decoderscriptmethods.uew’ files with this product that will provide syntax
highlighting for DecoderScript. If you use a different text editor that supports syntax highlighting, the list of
keywords and method names are given in these two ‘.uew’ files.

3.2 Basic Structure
A decoder module usually has five sections:

1. Header

2. Reference

3. DECODE

4. Table

5. Executable

3.2.1 The Header Section

/* Internet Protocol version 4. Copyright 2000-2016 Teledyne LeCroy. All rights reserved. */
"IPv4" 0x7f000401

A decoder module normally starts with a comment that:

TELEDYNE LECROY Chapter 3 Structure of a Decoder

12 DecoderScript ReferenceManual and User Guide

l References the protocol specification document used (Internet Protocol version 4)

l Names the author (Teledyne LeCroy)

l And usually includes a copyright notice (Copyright 2000-2001 All right reserved)

These three comments are optional as indeed are all comments. However, we highly recommend using
comments as they may later serve as a reference source for you or other engineers who may use your decoder.

The syntax of a comment matches that used by the C++ programming language. There are two types of
comments. One opens with a slash and an asterisk and closes with an asterisk and a slash; in each case, the pair of
characters must be written together with no intervening space. Such a comment may extend over several lines.
The other type of comment starts with two slashes and ends at the end of the line. Comments may appear
anywhere.

The first required statement in the header identifies the protocol by name and id number. The protocol name,
"IPv4" is the general name of the protocol typically expressed here in an abbreviated form. This name appears in
the Protocol Stack Wizard and in the Decode Pane to indicate the protocol layer, so it is appropriate to choose a
form that is suitable for these contexts.

The protocol name is followed by the decoder ID, 0x7f000401. Every protocol must have a unique id. Such IDs are
expressed as hexadecimal numbers by convention, but can also be expressed in decimal. When expressed in hex,
a "0x" is required before the number and must contain a minimum of 4 hex digits

Within a statement, items are always separated by spaces, never by commas or any other character. The protocol-
identification statement has an optional third item which specifies the data order. Multi-byte fields within a
protocol are interpreted in either network data order or host data order. The default data order for the decoder
may be selected by including either "HOST_DATA_ORDER " or "NETWORK_DATA_ORDER ". Whichever is selected
may be overridden as necessary on a per-field basis. If you omit the third item in the protocol-id statement then
the default is "NETWORK_DATA_ORDER ".

3.2.2 The Reference Section
The Reference section contains references to methods that perform operations of a global nature. They may be
listed in any order. Here, as an example, is the reference section for the IP decoder:

NEXT_PROTOCOL (FromField protocol)
NEXT_PROTOCOL_SIZE (ThisLayerLength tot_length)
FRAME_AFTER_DECODING (IpReconstructFragments a)

Each statement in this section starts with one of the following keywords followed by a method invocation:

BYTE_STREAM_FRAMER
FRAME_AFTER_DECODING
FRAME_BEFORE_DECODING
NEXT_PROTOCOL
NEXT_PROTOCOL_OFFSET
NEXT_PROTOCOL_SIZE
PAYLOAD_IS_BYTE_STREAM (no method)
PREPROCESSING
POSTPROCESSING
RECOGNIZER
SUMMARY_COLUMNS (no method but special syntax to describe columns)

A decoder can only use one of each of these statements with the exception of PREPROCESSING and
POSTPROCESSING. An unlimited number of PRE- and POSTPROCESSING directives may be included and in each
case, they will be performed in the order in which they appear.

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 13

3.2.3 DECODE
The keyword, DECODE, must be placed between your reference section and whatever follows. Generally this is
the Table Section.

3.2.4 The Table Section
As you would expect, the table section of the decoder contains a list of tables. Table values are always included in
the protocol specification. Here is an example of a table taken from the IP decoder:

TABLE prec
{ 7 "Network Control"}
{ 6 "Internetwork Control"}
{ 5 "CRITIC / ECP"}
{ 4 "Flash Override"}
{ 3 "Flash"}
{ 2 "Immediate"}
{ 1 "Priority"}
{ 0 "Routine"}
{ Default "Unknown"}
ENDTABLE

This table lists the order of precedence of a packet. The table is bracketed by TABLE and ENDTABLE keywords
with the former bearing the name of the table. Each entry in the table is written as a list of items in braces. The
first item in an entry is the field value and the second is a string for display in the Summary Pane. Tables are
usually ordered by field value, though this is not a requirement. We recommend that you follow this practice.

The last entry in this table has the value Default. This serves as a catchall for values that have no entries. We urge
you to include a default entry for every table except perhaps for small tables that have an entry for every possible
field value. One last reminder about tables: comments may not be interspersed with table entries.

3.2.5 The Executable Section
The executable section is where the real decoding work is done. As its statements are processed, an implicit
pointer is moved through the layer being decoded from beginning to end.

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH

Normally each FIELD statement decodes a given number of bits or bytes and then moves the pointer forward by
that amount ready for the next FIELD. As we shall see, however, we can manipulate the pointer in various ways in
order to process fields out of sequence or to process them twice when the need arises - as it often does. Strictly
speaking this pointer is a bit pointer. If you are dealing with a protocol that is totally octet-oriented, you may safely
imagine the pointer as a byte pointer.

Eight types of statements appear in the executable section. Five of them, FIELD, RESERVED, GROUP, GROUP FIELD
and BRANCH, we refer to collectively as executable statements. The sixth, PARAMETER, is a pseudo-field, the
seventh is the INCLUDE keyword and the eighth is END_MAIN_PATH. When the protocol analyzer sees END_
MAIN_PATH, it stops decoding that layer and goes on to the next.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

14 DecoderScript ReferenceManual and User Guide

Every statement except BRANCH, RESERVED and INCLUDE defines some kind of protocol field or group of fields
and every such entity must be given a unique name within a decoder. Thus, not only must all FIELDs have unique
names, but you cannot have a FIELD with the same name as a GROUP or a PARAMETER. By convention we use
names that are all lower case and with words separated by underscores.

We encourage you to follow along with the tutorial examples. FP.dec, the Fictitious Protocol decoder file, is in the
My Decoders directory of your product installation. We also provide a capture file of FP data called FP.cfa. You can
load FP.cfa into your protocol analyzer and see how the different types of data appear on the screen. FP.cfd is the
capture file declaration used to create FP.cfa. This is a text file that can be loaded into CFA Maker to create a
capture file. FP.cfd shows the data we used to create FP.cfa and explains what type of data is in each frame. For
information on how to obtain a copy of CFA Maker, please contact Technical Support.

Note: If the Fictitious Protocol files do not exist in your My Decoders directory, or if you want
to update the files to the latest release run the "DecoderScript Developer Kit" located in your
"C:\\Users\Public\Desktop\Frontline ComProbe Protocol Analysis System [your
version]\Development Tools\" folder.

Throughout this tutorial, hexadecimal numbers will be prefixed with "0x" to distinguish them from decimal values.

Fictitious Protocol is the next example we will use to further explain DecoderScript writing. First let's look at the
type of data we want to decode. Then we will build our decoder.

3.3 Fictitious Protocol
Fictitious Protocol (FP) is an asynchronous point-to-point protocol that connects a Master (some kind of computer)
with a Slave (some kind of equipment, let us say an air-conditioning or refrigeration unit). The Slave has 32 sensors
(such as a thermometer) and 32 actuators (such as a thermostat). The protocol comprises commands that the
Master sends to the Slave either to set a value in an actuator or to read a value from a sensor. The Slave responds
with acknowledgements and sensor readings respectively. The Slave never sends anything except in response to a
message from the Master.

The content of each frame is either a command or a response. A command looks like this:

CommandCode Data Checksum

The Command Code is a single-byte field that identifies the command. It is followed by zero or more data bytes.
The number of such data bytes is fixed for each command. The last field is a one-byte checksum that is the
exclusive of all the other bytes.

A response looks a little different:

Response Code Data
Count

Data Checksum

The Response Code field is a one-byte element that identifies the response. It is followed by a one-byte count of
the data bytes that follow.

Here is a list of commands with the data associated with each:

Code Command Data
0 Request Status (none)

Table 3.2 - CommandCode Data Format

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 15

Code Command Data
1 Set Actuator One-byte actuator number

Two-byte value to set

2 Read Sensor One-byte sensor number

Table 3.2 - CommandCode Data Format(continued)

And here is a similar list of responses:

Code Response Data
0 Request Status (none)

1 Set Actuator One-byte actuator number

Two-byte value to set

2 Read Sensor One-byte sensor number

Table 3.3 - Response Code Data Format

The bit flags returned with the Status response include (in binary):

Bit Meaning
00000100 Alarm: one or more sensors are in the alarm range

00000010 Power: unit has noted a power disruption

00000001 Test: unit in diagnostic mode

Table 3.4 - Response Bit Flag

Let us look at the simple exchange of one command and one response. The master sends a command to set
actuator number 10 and the slave acknowledges this. Here is a snippet from the Frame Display:

Figure 3.2 - Set Actuator Command and Response

We assume that you are familiar with the basic layout and operation of the Frame Display window. If you are not,
we suggest you familiarize yourself with it using one of the ComProbe protocol analyzer demos.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

16 DecoderScript ReferenceManual and User Guide

In the Summary Pane (the Frame Display subwindow with column headings starting with "Bookmark"), we see a
one-line entry for each frame. This pane gives you a view over the succession of frames in the capture with the
most important details of each. The columns headed "Bookmark", "Frame#", "Frame Size", "Delta", and
"Timestamp" are standard; you will see them in every Frame Display window no matter what protocol is being
decoded. The columns labeled "C'sum" and "Command/Response" are inserted by our FP decoder.

You can make your decoder add any columns you choose to the Summary Pane and display whatever you deem
useful in those columns. Our "Command/Response" column shows the name of the command or response in the
frame. This information, the type of frame (whatever that means in the context of a particular protocol), is
certainly the most crucial thing to put in the summary. The other custom column, "C'sum", shows the checksum
for the frame. There is enough column space left that we could add even more columns for FP; for example we
could have an "Actuator/Sensor" column and display the relevant number for frames that contain such. Deciding
what to show in the Summary Pane and how to organize that data into columns is an exercise for the decoder
writer - there are no rules about it. By the way, the values in the "Delta" and "Timestamp" columns shown above
are not meaningful because we artificially constructed the captures (since FP is not a real protocol) and no
timestamps were included.

The frame that is selected (highlighted) in the Summary Pane is displayed in detail in the other panes. The key one
is the Decode Pane (at left center). This is the one pane that a decoder has almost complete control over. The
logical data panes on the right (Binary, Radix, and Character) show the data in various formats with the data
representing the field selected in the Decode Pane highlighted. At the bottom, the Event Pane shows the raw data
that comprises the frame including start-of-frame and end-of-frame events (those flag-like symbols) that we will
explain later.

As we see in Figure 3.2, the Decode Pane starts with a one-line description of the frame ("Frame 3: (DTE) Len=5"
in our case). Below this is a tree with one branch at the root level for each protocol represented within the frame.
In our example, we have just the one protocol, FP. Everything on the FP branch is generated by the FP decoder. In
our example every FP field is shown at the same level but a decoder can construct sub-trees of arbitrary
complexity.

Now that we know what type of information we are dealing with, let's create our decoder script.

3.3.1 The Basic Structure of a Decoder
Let's start building our decoder. We will start out with the bare bones and build from there. Some of the terms
you have already seen in the preceding pages, while others are going to be new.

We will start our decoder by writing a decoder for FP's Set Actuator command. The structure for this command is

"Fictitious Protocol" 0x7f000000

DECODE
FIELD command_code (Fixed 1 Byte) (Hex) "Command"
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number"
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) "Checksum"
END_MAIN_PATH

The first element in the file is the string "Ficititious Protocol". This is the name of the decoder as you wish it to
appear in the protocol analyzer. As you remember, this is the Heading section. The name appears in the Protocol
Stack Wizard and also in the Summary and Decode panes on the Frame Display.

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 17

The second element is the Decoder ID. Every decoder must have a unique Decoder ID. The Decoder ID can be
expressed in either decimal or hexadecimal, but as they are rather large numbers, we use hexadecimal by
convention. You recognize this as a part of the Reference section.

The next element is a statement reading simply "DECODE", which must be placed just prior to the first executable
statement.

One thing to note here as we continue is writing a decoders is not a linear process. Even though a script is made
up of sections that should appear in a certain order, you will commonly work in different parts of the script and
different times.

Let's start with the Field Statement. Field Statements are found in the Executable section.

3.3.2 The FIELD Statement
The heart of a decoder is the set of FIELD, GROUP and associated statements that take values from given protocol
fields and displays them in the decode window. Sometimes you want to directly display the value in a field in the
form of a number; other times you want to display a string indicating what that value represents. Almost every
protocol has fields that can be displayed most informatively by selecting a string from a table indexed by the field
value.

Note: Syntax rules and similar guidelines are offset from themain text of the tutorial in boxes
like this one. Generally, such rules cover only simple cases of use.

Let's deconstruct these Field Statements

3.4 General Syntax Rules
A decoder is constructed of three basic elements: statements, comments and braces.

The syntax of a comment matches that used by the C++ programming language. There are two types of
comments. One opens with a slash and an asterisk and closes with an asterisk and a slash; in each case, the pair of
characters must be written together with no intervening space. Such a comment may extend over several lines.
The other type of comment starts with two slashes and ends at the end of the line. Comments may appear
anywhere.

A statement consists of a sequence of items separated by white space (spaces or line breaks). It would probably
be more common usage to refer to a statement as a sequence of fields but we retain the term "field" to apply
strictly to a protocol field and use "item" for the components of a statement. An item may be a keyword, a
name/string, a numeric constant, or a method invocation.

Keywords that we have already met include FIELD and GROUP. We have a convention that keywords are always
written in all capitals; this makes for good readability but is not required.

A name/string is a character string that represents, for example, the name of a field or the text to appear in a
decode detail. A name/string must be enclosed in double quotes if it contains spaces or characters other than
letters, numbers, and underscores. While names and strings are treated the same syntactically, conceptually they
are rather different and by convention we write them in distinct ways. FIELDs and GROUPs are given names that
do not include spaces and their names are not quoted. Furthermore, names are usually all lowercase and
underscores are used as in this_is_a_field_name. We make a practice of giving methods names exemplified by
DoThisToThat. Whenever names are matched, the comparison is done without sensitivity to case. Strings, that is
text fragments to be displayed as part of the decode, are always double-quote delimited for readability.

A number is expressed as either a signed decimal (e.g. -10) or in hexadecimal notation prefaced by "0x" (for
example, 0xFFFF).

TELEDYNE LECROY Chapter 3 Structure of a Decoder

18 DecoderScript ReferenceManual and User Guide

A method invocation is written as a parenthesized expression consisting of a method name followed by a list of
parameters as in: (MethodName param1 param2)

Braces are used to group statements together and to delimit table entries. Braces must appear in matched pairs.

DecoderScript statements are written as a sequence of items separated by at least one space. A line break counts
as a space so a statement may be spread over two or more lines (as shown in the actuator_value FIELD). Numbers
may be expressed either in decimal or in hexadecimal prefaced by "0x".

Following each name, we see an expression that defines the size of the field, (Fixed 1 Byte) for example. This size
may serve as many as three purposes. First, as each protocol layer is decoded, a pointer (called the "bit pointer")
passes through the data. This pointer starts out at the beginning of the layer and, as each field is processed, it is
incremented by the size of the field. The second purpose is to store the field value in an appropriate way. And
third, the size may affect how the field value is formatted.

3.4.1 Standard Methods
The field size is derived by calling a method. A method is akin to a function, routine or subprogram in a
programming language; it is a piece of code that accepts certain inputs, does some calculation with them, and
returns an output. There are several types of methods that serve different needs. The type used here is called a
Size Method; others include FormatMethods and Verify Methods. A standard method is one supplied with the
protocol analyzer

3.4.1.1 Method Syntax
A method is always written within parentheses. The name of the method is given followed by a list of zero or
more parameters. Methods can have optional parameters. Optional parameters have use a default value when a
specific value is not given.

3.4.1.2 Size Method
In our examples above, the size of each field is fixed and is obtained by invoking the Size Method called Fixed that
returns a given constant. The Fixed method takes two parameters, a count and a unit name. The unit may be
"bits", "bytes", "words", etc. In other cases, the size of a field may be specified by the contents of another field,
may be defined by some fixed value that marks its end (such as a null-terminated string), or may comprise the rest
of the data in the frame. Various other Size Methods are provided to handle these situations.

3.4.1.3 Format Method
The next component of our FIELD statement is the Format method invocation. You will see (Hex) and (Decimal).
All these are FormatMethods and serve to format the field value for display. As you would guess, they format
hexadecimal integers and unsigned decimal integers respectively. (Formatting signed decimals requires a Retrieve
method to extract the sign bit; this is an advanced topic discussed later.)

The last item is the decode label (e.g., "Command") that appears at the end of the FIELD statement. The decode
label is separated from the formatted value by a colon and space. Here is a screenshot of the Decode-Pane display
of a Set Actuator command:

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 19

Figure 3.3 - Set Actuator Command

3.4.2 Verify Field Values
In the description of FP, we state that there are 32 actuators. The actuator numbers are 1 through 32, which
means the actuator_number field should not contain any value less than 1 or greater than 32. We can check this
by adding a VERIFY statement to the end of the actuator_number field and using a Verify Method. The resulting
new statement is:

FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)

FieldIsBetween takes two parameters, a low value and a high value. The method is inclusive, which means if the
field value is 1 or 32 or any value in between it will pass the test. If the field value is less than 1 or greater than 32
the test will fail, and the field will be tagged in the Decode pane in red and the expected value displayed, as shown
in this snippet from the Frame Display.

Figure 3.4 - How Errors Are Displayed

In addition, the frame number on the Summary pane will also be in red.

Verify Methods can be used to validate a message checksum as in:

FIELD checksum (Fixed 1 Byte) (Hex) "Checksum" VERIFY (FPChecksum)

Our decode of the Set Actuator command now looks like this (new items are bolded):

"Fictitious Protocol" 0x7f000000
DECODE
FIELD command_code (Fixed 1 Byte) (Hex) "Command"
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) "Checksum" VERIFY (FPChecksum)
END_MAIN_PATH

3.4.2.1 Custom Methods
Before we continue with the Verify Method, this is a good time to introduce Custom Methods. All the methods we
have encountered previously have been what we call "standard methods". A standard method is one supplied
with the protocol analyzer. The method used here to verify the checksum, FPChecksum, as its name suggests, is a
method specific to Fictitious Protocol. We call this a "custom method" since it is created by the decoder writer.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

20 DecoderScript ReferenceManual and User Guide

The protocol analyzer supplies standard methods, including standard checksum methods, to do just about
everything that is commonly needed in decoders and most decoders can be written with those alone. However,
should the need arise for a method unique to your protocol's particular requirements, then that is easily met by
writing a custom method.

Now let's get back to Verify Methods. Other very useful Verify Methods compares the field value with a constant
as in these examples:

(FieldIs LessThan 10)
(FieldIs LessThanOrEqualTo 17)
(FieldIs EqualTo 0)
(FieldIs NotEqualTo ‐1)
(FieldIs GreaterThan 4)
(FieldIs GreaterThanOrEqualTo 0)

3.4.2.2 Verify Syntax
When a VERIFY clause is used, it must be placed at the end of the FIELD statement. It consists of the keyword
VERIFY followed by a call to a Verify Method such as FieldIs or FieldIsBetween. There are also several Verify
Methods for validating checksums.

Before we look at adding a table to our decoder script, let's look at how to create Summary Pane columns using
the IN_SUMMARY field statement

3.4.3 Creating Summary Pane Columns Using IN_SUMMARY
Normally every field is displayed in the Decode Pane. The special IN_SUMMARY clause prompts the protocol
analyzer to display it in the Summary Pane as well. The keyword IN_SUMMARY is followed by the name of the
column in which the value should be shown. Referencing a column in this way suffices to create it. The name is
followed by a number that specifies the default width of the column in pixels.

We will enhance our FP decoder by putting the checksum and command_code fields in the Summary pane. The
IN_SUMMARY keyword appears right before the label. The resulting field statements are:

FIELD command_code (Fixed 1 Byte) (Hex) IN_SUMMARY "Command/Response" 150 "Command"
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)

Our decode of the Set Actuator command now looks like this (changes are in bold):

"Fictitious Protocol" 0x7f000000
DECODE
FIELD command_code (Fixed 1 Byte) (Hex) IN_SUMMARY "Command/Response" 150 "Command"
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH

You can put the value of more than one field into the same Summary pane column. For example, the name of the
command_code column is "Command/Response", which implies that somewhere there is a response_code field,
which also puts its value in the Command/Response column. All you need to do is reference the same column
name in the second field. For example:

FIELD response_code (Fixed 1 Byte) (Hex) IN_SUMMARY "Command/Response" 150 "Response"

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 21

The advantage of doing this is that you can easily see a command followed by its response in the Summary pane.
In the case of our Fictitious Protocol, where a slave is not supposed to talk unless instructed to by the master,
cases where a slave speaks out of turn or a master has to ask something twice jump out. Here's a fragment of the
Summary pane illustrating this:

Figure 3.5 - Illustration of Master Sending Twice

3.4.3.1 IN_SUMMARY Syntax
IN_SUMMARY clauses appear right before the label. They consist of the keyword IN_SUMMARY followed by the
column name the field value should appear in and the default column width in pixels.

Summary pane columns will appear in the order the fields are decoded. There is a keyword called SUMMARY_
COLUMNS which will allow you to set the order of the columns.

3.4.4 Tables
The last enhancement needed to our decode of the Set Actuator command is to make the command_code field
show the name of the command rather that just the hex value. That way the Summary and Decode panes will be
easily readable as in the example above, where you can quickly scan down the Command/Response column and
see what commands have been issued.

We use a FormatMethod called Table to accomplish this. At this point you may ponder and say, "I thought Table
was a section within a decoder script. That is what it sayson page 12." This is true, table is indeed a section within
the decoder script. However, Table is also a FormatMethod. We will explain.

Table uses a field value to index a table of strings. In effect, the Table Method acts as a pointer to a table within the
Table Section. Tables are placed at the top of the decoder, right below the DECODE keyword and before any FIELD
statements.

Here is an example that defines a table of FP commands:

TABLE tableCommands
{ 0 "Request Status" "Request Status"}
{ 1 "Set Actuator" "Set Actuator"}
{ 2 "Read Sensor" "Read Sensor"}
{ Default "???" "(unknown)"}
ENDTABLE

This is a DecoderScript representation of the list of FP commands given at the start of this chapter. Each entry
starts with a number that corresponds to a command code except for the last in which the keyword "Default" tags
a special entry that serves as a catchall for any values for which there are no explicit entries. The number can be
in either decimal or hexadecimal. Two strings follow. The first is for display in the Summary Pane while the second
is for the Decode Pane. In our table these two strings are the same for each entry other than the default. The
value of having two distinct strings, one for each pane, is that you frequently want to display an abbreviated
description in the Summary Pane (where space is tight) and a fuller description in the Decode Pane.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

22 DecoderScript ReferenceManual and User Guide

3.4.4.1 TABLE Syntax
Tables begin with the keyword TABLE and end with the keyword ENDTABLE. The table name follows the TABLE
keyword. Table names must be unique, which means that two tables cannot have the same name, and a table and
a field cannot share the same name either. Table entries begin and end with braces. The elements of each entry
are:

{ FieldValue "Summary Pane String" "Decode Pane String" }

If only one string is present, it will be used for both the Summary and Decode panes.

Once we have our table in place, we can alter our command_code field to use the table method to look up the
appropriate string as follows:

FIELD command_code (Fixed 1 Byte) (Table tableCommmands) IN_SUMMARY "Command/Response"
150 "Command"

Below are two snapshots from the Decode pane. The Figure 3.6 - shows the command_code field formatted in
hex while Figure 3.7 - shows the field formatted from the table.

Figure 3.6 - HEX

Figure 3.7 - From Table

Our decode of the Set Actuator command now looks like this:

"Fictitious Protocol" 0x7f000000
DECODE
TABLE tableCommands
{ 0 "Request Status" "Request Status"}
{ 1 "Set Actuator" "Set Actuator"}
{ 2 "Read Sensor" "Read Sensor"}
{ Default "???" "(unknown)"}
ENDTABLE
FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"

150 "Command"
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH

Quite a change from our starting point!

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 23

3.4.5 The Group Statement
GROUP statements serve several useful purposes all related, as the name implies, to grouping together a
sequence of statements such as the Set Actuator FIELDs above. The grouped statements are contained within
braces and are normally indented for readability.

3.4.5.1 GROUP Syntax
Statement starts with the keyword GROUP followed by a name. The name may optionally be followed by a string
called a label. The GROUP is followed by a list of DecoderScript statements contained within braces.

Groups can be either labeled or unlabeled. For example:

GROUP labeled "labeled"
GROUP unlabeled

The difference lies in how they appear in the Decode Pane. For a labeled group, a sub-tree is displayed named
with the given label. The user has to open the sub-tree to see the contained elements displayed. If the GROUP
does not have a label then the GROUP's contents are displayed but no Node for the GROUP is displayed. There are
other uses for GROUPs without labels that we will introduce later. Figure 3.8 shows how unlabeled vs. labeled
groups appear in the Decode Pane. On the left is a straight decode of a Set Actuator Response, while on the right
is a decode where the Response and Data Byte Count fields have been included in a GROUP labeled with the label
"Response".

Figure 3.8 - Unlabeled vs Labeled GROUPs

If you recall from the description of FP, the Set Actuator command is just one of three possible commands. We've
got a decode of the Set Actuator command, now we want to add a decode for the Read Sensor command. In
order to separate the two, we'll put the Set Actuator FIELDS into a group.

GROUP cmdSetActuator "Set Actuator"
{
FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"

150 "Command"
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
}

The format of the Read Sensor command is as follows:

CommandCode Sensor Number Checksum

Our Read Sensor group will look like this:

TELEDYNE LECROY Chapter 3 Structure of a Decoder

24 DecoderScript ReferenceManual and User Guide

GROUP cmdReadSensor "Read Sensor"
{
FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"

150 "Command"
FIELD sensor_number (Fixed 1 Byte) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
}

Notice that the command_code and checksum fields are identical in both groups. To avoid retyping the same
information, we use the form:

FIELD field_name ;

Such a statement means: decode the field according to a FIELD definition given elsewhere named field_name.
(There does not have to be a space between the field name and the semi-colon; we do that for readability.) This
statement is particularly useful when you need to decode a certain field in multiple paths within your decoder.
The full FIELD definition may be placed out of the main line of control and then referenced with the field name
followed by a semi-colon. We can rewrite our Read Sensor group as follows:

GROUP cmdReadSensor "Read Sensor"
{
FIELD command_code ;
FIELD sensor_number (Fixed 1 Byte) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
FIELD checksum ;
}

Incidentally, it is also possible to reference a GROUP multiple times using the same construction. This is useful if
you have a series of statements that occur frequently. For example, a date sequence where the first byte is the
day, the second the month and the third the year could be grouped into a GROUP date. Anywhere that same
sequence is used, just enter GROUP date ; in the decoder and all three field statements in the group will be
decoded.

We now run into a dilemma. The command_code field tells us whether the command is a Set Actuator or a Read
Sensor command. How do we know which one it is? The answer is to use a conditional to test the value of
command_code and then decide whether to decode sensor_number or actuator_number and actuator_value
based on the value of command_code.

3.4.5.2 Dynamic GROUP Labels
Normally, the label on a GROUP statement is in quotes and cannot be changed. With the LABEL method type, a
GROUP can be labeled dynamically.

Take this snippet of DecoderScript:

FIELD myField (Fixed 1 Byte) (Decimal) “My Field”
GROUP “My Group”
{
}

The content of the group is unimportant. The interesting thing here is “My Group”. Normally that would be static
text but if we use a LABEL method as below:

FIELD myField (Fixed 1 Byte) (Decimal) “My Field”
GROUP LABEL (FromField myField Decimal)
{
}

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 25

If myfield has a value of 0x01, the label on myGroup will be ‘1’. This method works just like a FORMATmethod
except its output is a label.

This format works even with TABLEs. See this example:

TABLE myTable
{ 0 “zero” }
{ 1 “one” }
ENDTABLE
FIELD myField (fixed 1 byte) (decimal) “My Field”
GROUP LABEL (Table myTable myfield decimal)
{
}

Again, we have a method that works just like the FORMAT table method except it outputs to the LABEL.

LABEL methods only work for GROUPs, not FIELDs or GROUPFIELDs.

Another creative method is LabelCount.

FIELD init_cntr (Fixed 0) RETRIEVE (StoreInteger 1) (hex) SUPPRESS_DETAIL STORE cntr
GROUP information REPEAT SIZE (ToEndOfLayer) "Attribute Handles"
{
GROUP handle_uuid_pairs LABEL(LabelCount "Attribute Handle-Type(UUID) pair" cntr)
{
FIELD handle (Fixed 2) (Decimal) "Attribute Handle"
FIELD uuid_2 (Fixed 2) IF(FieldIs EqualTo 1 format) (Hex) "Attribute Type"
FIELD uuid_16 (Fixed 16) IF(FieldIs EqualTo 2 format) (Hex) "Attribute Type"
}
FIELD increment_count (Fixed 0) RETRIEVE (StoreField cntr) ALSO (AddInteger 1) (Decimal)

SUPPRESS_DETAIL STORE cntr

3.4.6 Conditional Statements
The first thing to do is take the Command Code field out of the two groups. We'll decode the Command Code first,
and then use IF clauses on the Set Actuator and Read Sensor groups to decide between them. IF clauses may be
used on individual fields or on groups. The syntax is the same in both cases.

3.4.6.1 IF Syntax
An optional IF clause may be inserted in a FIELD statement following the Size Method. It consists of the keyword IF
followed by a call to a Boolean Method. If the method returns FALSE then the FIELD is skipped. The effect of the
test may be reversed by inserting the keyword NOT after the IF. Thus, the following are equivalent:

IF (FieldIs NotEqualTo 0 actuator_number)
IF NOT (FieldIs EqualTo 0 actuator_number)

IF clauses may also be put in GROUP statements following the name.

IF clauses depend on Boolean Methods that test for some condition and return True or False. The Boolean method
FieldIs checks the value in a field we have already decoded.

FieldIs Method: FieldIs is a Boolean Method that compares the value of a previously decoded field with a constant.
The first parameter is a relational operator (LessThan, LessThanOrEqualTo, EqualTo, NotEqualTo, GreaterThan,

TELEDYNE LECROY Chapter 3 Structure of a Decoder

26 DecoderScript ReferenceManual and User Guide

GreaterThanOrEqualTo). The second parameter is the number that the field value is to be compared to. The name
of the field is supplied as the third parameter.

To distinguish between the Set Actuator and Read Sensor commands, we need to find out if the Command field is
equal to 1 (Set Actuator) or 2 (Read Sensor). We add IF statements as follows (new items are in bold):

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

// if command_code = 1 execute the code in the Group, otherwise skip over Group
GROUP cmdSetActuator IF (FieldIs EqualTo 1 command_code) "Set Actuator"
{
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
}
// if command_code = 2 execute the code in the Group, otherwise skip over Group
GROUP cmdReadSensor IF (FieldIs EqualTo 2 command_code) "Read Sensor"
{
FIELD sensor_number (Fixed 1 Byte) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
}
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)

The checksum field has also been removed from both groups because it is identical for both commands. Since the
Read Sensor group only has one field in it, we could also write the decoder without the Read Sensor group and
put the IF clause on the sensor_number field, as shown below, but this makes the decoder more difficult to read.

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

GROUP cmdSetActuator IF (FieldIs EqualTo 1 command_code) "Set Actuator"
{
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
}
FIELD sensor_number (Fixed 1 Byte) IF (FieldIs EqualTo 2 command_code) (Decimal) "Sensor

Number" VERIFY (FieldIsBetween 1 32)
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)

When you need to handle both sides of a test, the IF and the IF NOT, it is necessary to explicitly test for one
condition and then the reverse; there is no ELSE facility to create this effect.

Normally, the label on a GROUP statement is in quotes and cannot be changed. With the LABEL method type, a
GROUP can be labeled dynamically.

For example:

FIELD myField (fixed 1 byte) (decimal) "My Field"
GROUP myGroup "My Group"
{
}

The content of the group is unimportant. The interesting thing here is "My Group". Normally that would be static
text but if we use a LABEL method as below:

FIELD myField (fixed 1 byte) (decimal) "My Field"
GROUP myGroup LABEL (FromField myfield decimal)
{

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 27

}

If myfield has a value of 0x01, the label on myGroup will be '1'. This method works just like a FORMATmethod
except its output is a label. Let's make it more interesting:

TABLE myTable
{ 0 "zero" }
{ 1 "one" }
ENDTABLE
FIELD myField (fixed 1 byte) (decimal) "My Field"
GROUP myGroup LABEL (Table myTable myfield decimal)
{
}

Again, we have a method that works just like the FORMAT table method except it outputs to the LABEL.

LABEL methods only work for GROUPs, not FIELDs or GROUPFIELDs.

3.4.7 Branch Statement
Now we run into another dilemma. We have one more command and three more responses to decode. While
we could use groups and conditionals to decode all six commands and responses, this is not very efficient and
quickly becomes unwieldy for protocols with large numbers of commands. The BRANCH keyword solves this
dilemma.

We noted that the FIELD statements we quoted above serve to decode a Set Actuator and Read Sensor command
in FP. If you look at the full FP decoder (on file FP.DEC), you will not find those statements appearing as such. What
you will see is:

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

BRANCH (FromTable tableCommands command_code)
FIELD checksum ;

The BRANCH statement causes a jump to a statement specific to the command code. The target of the branch is
provided by a Branch Method, in this case FromTable, which extracts the branch item from the table entry
specified by the parameters.

3.4.7.1 Branch Syntax
This statement starts with the keyword BRANCH followed by a call to a Branch Method that obtains a reference to
the statement to be branched to. The only commonly used Branch Method is FromTable. The target of a BRANCH
may be either a FIELD statement or a GROUP (discussed in the next section below).

The FromTable method finds the entry in a given table that matches a given value and returns the branch item
from it. The first parameter (tableCommands) is the name of the table; the second (command_code) is a
fieldname. The value of that field serves as the index. If the matching entry has no branch item, the method
returns a value that suppresses a branch.

The fact that we can refer to the command_code field in our BRANCH reveals one crucial fact about how the
protocol analyzer works: when a field is decoded, its value is not merely extracted, formatted and displayed but it
is also saved. And that saved value may be used by subsequent DecoderScript statements. This is absolutely
necessary in situations where the value in one field determines the length of another, and can be very handy in
several other circumstances. Field values are automatically saved for the duration of the decoding of the layer.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

28 DecoderScript ReferenceManual and User Guide

You can also save data to be used by other layers in the same frame (intra-frame) or by other frames (inter-
frame). These data persist for longer than the decoding of the layer. See the section on Intra-frame and Inter-
frame Data for information on how to do this.

We will explain later what information you need to add to the Command table to allow the branch to occur. For
now, assume that information is there. Because of the branch, we can remove our Set Actuator and Read Sensor
groups from the main path of the decoder, and put them outside the main section. As the protocol analyzer
moves through the decoder, the branch will cause it to jump to the appropriate group, decode that group, and
then return to the main path at the same point as before. After altering the decoder, it looks like this:

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

BRANCH (FromTable tableCommands command_code)
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH
GROUP cmdSetActuator
{
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
}
GROUP cmdReadSensor
{
FIELD sensor_number (Fixed 1 Byte) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
}

The cmdSetActuator and cmdReadSensor groups have been moved after the END_MAIN_PATH keyword, and the
BRANCH statement inserted after the Command field. The last piece of information is how to alter the Command
Table.

3.4.7.2 Branching Information in Tables
Our original command table for FP looked like this:

TABLE tableCommands
{ 0 "Request Status" "Request Status"}
{ 1 "Set Actuator" "Set Actuator"}
{ 2 "Read Sensor" "Read Sensor"}
{ Default "???" "(unknown)"}
ENDTABLE

In order to use a BRANCH, we need to add some additional information to the table. Remember that the first item
in each table entry is the field value to look up, and the second and third entries are the strings for display in the
Summary and Decodes panes. Now we need to add the information for the BRANCH to extract. The resulting table
looks like (changes are in bold):

TABLE tableCommands
{ 0 "Request Status" "Request Status"}
{ 1 "Set Actuator" "Set Actuator" 0 cmdSetActuator}
{ 2 "Read Sensor" "Read Sensor" 0 cmdReadSensor}
{ Default "???" "(unknown)" 0 Unknown}
ENDTABLE

The fourth item in each table entry contains a number which is called the extra table data. The extra table data can
be used to hold any number that would be useful in the decoding process. In the FP decoder we do not make use
of the extra data field but must include a value for it, as a place-holder, when we have another item following. The

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 29

last item identifies a DecoderScript statement, either a FIELD or a GROUP, that performs decoding specific to the
command. With our new table, the BRANCH (FromTable tableCommands command_code) instructs the protocol
analyzer to look up the value of command_code in tableCommands and jump to the GROUP or FIELD named at
the end of the table entry for that value.

Our FP decoder now looks like this:

"Fictitious Protocol" 0x7f000000
DECODE
TABLE tableCommands
{ 0 "Request Status" "Request Status"}
{ 1 "Set Actuator" "Set Actuator" 0 cmdSetActuator}
{ 2 "Read Sensor" "Read Sensor" 0 cmdReadSensor}
{ Default "???" "(unknown)" 0 Unknown}
ENDTABLE
FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"

150 "Command"
BRANCH (FromTable tableCommands command_code)
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH
GROUP cmdSetActuator
{
FIELD actuator_number (Fixed 1 Byte) (Decimal) "Actuator Number" VERIFY (FieldIsBetween 1 32)
FIELD actuator_value (Fixed 2 Bytes) (Decimal) "Value to set"
}
GROUP cmdReadSensor
{
FIELD sensor_number (Fixed 1 Byte) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
}

The statements within the cmdSetActuator and cmdReadSensor GROUPs are grouped simply for the purpose of
making them a suitable object of a BRANCH. The point is that the object of a BRANCH is always a statement - it
cannot be an unconnected sequence of statements because there is nothing akin to a "return" statement such as
one finds in most programming languages. It can be a single statement, that is a FIELD, or a compound statement,
namely a GROUP. Once that statement has been processed, control is automatically returned to the statement
following the BRANCH.

You may have noticed that Request Status doesn't have any branching information. This command consists solely
of the Command Code and the checksum, so there is nothing to branch to. In this situation the BRANCH statement
is ignored and decoding continues on to the next statement.

3.4.8 SUPPRESS_DETAIL and NO_MOVE
Adding our last command to our decoder is a trivial task at this point. However, we also have three responses to
decode. The FP decode says that the first byte of a frame is the command or response code; however, we don't
know whether the frame contains a command or a response until we decode it. We could use the label
"Command/Response" for the first byte, but that's not as easy for the user to understand as if we said either
"Command" or "Response" depending on which it was.

Towards the beginning of the tutorial, we explained how Size methods move the bit pointer through the data. It
would be useful if we could decode the first byte in the layer, look at it, decide if it's a command or a response,
and only then display the field with the right detail tag. To do this, we would need to decode the field, prevent it
from being displayed in the Decode pane, and leave the bit pointer at the beginning of the field when we're
finished so it's in position to decode the field properly once we know if it's a command or a response.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

30 DecoderScript ReferenceManual and User Guide

The keyword NO_MOVE tells the protocol analyzer to leave the bit pointer where it is after decoding the field.
Why do this? Because the command and response statements decode the same data again. (You could achieve
the same effect by adding a StartBit method, described later, to the first field in the group but in this case, using
NO_MOVE is a much cleaner choice.)

3.4.8.1 NO_MOVE Syntax
A NO_MOVE keyword goes after the tag and before any VERIFY clause.

The keyword SUPPRESS_DETAIL is used to decode a field without displaying the contents in the Decode pane.

3.4.8.2 SUPPRESS_DETAIL Syntax
A SUPPRESS_DETAIL keyword is used in place of the label.

By combining these two keywords on the same field, we can decode it without displaying the results and without
moving the pointer. We can then use the value in the field to determine whether to label it a Command or a
Response and display the proper string from the Commands table.

Note that when we decode an already decoded field in a new way, we are obliged to give it a new name,
command or response in this case. Here's how it looks:

FIELD command_or_response (Fixed 1 Byte) (Hex) SUPPRESS_DETAIL NO_MOVE
FIELD command (Fixed 1 Byte) IF (FieldIsBetween 0x00 0x02 command_or_response) (TABLE

tableCommands) IN_SUMMARY "Command/Response" 0 "Command"
GROUP response_group IF (FieldIsBetween 0x80 0x82 command_or_response)
{
FIELD response (Fixed 1) (TABLE tableCommands) IN_SUMMARY
"Command/Response" 0 "Response"
FIELD response_count (Fixed 1) (Decimal) "Data byte count"
VERIFY (FieldIsBetween 1 3)
}
BRANCH (FromTable tableCommands command_or_response)
FIELD checksum (Fixed 1 Byte) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY

(FPChecksum)
END_MAIN_PATH

Responses have the additional response_count field giving the number of data bytes in the response. We created
a response_group to join together the response and response_count fields and put the conditional on the group.

3.4.9 The GROUP FIELD and RESERVED Statements
Now let us look at the statements for decoding an FP status response since that illustrates the decoding of bit
fields plus two new statement types. It is also another example of the NO_MOVE keyword.

GROUP FIELD rspStatus (Fixed 3 Bits) (Hex) "Status" NO_MOVE
{
RESERVED (Fixed 5 Bits)
FIELD alarm_bit (Fixed 1 Bit) (Binary) "Alarm"
FIELD power_bit (Fixed 1 Bit) (Binary) "Power"
FIELD test_bit (Fixed 1 Bit) (Binary) "Test mode"
}

We have met FIELD and GROUP and here we encounter a GROUP FIELD. This statement combines some of the
best features of FIELD and GROUP. In particular it allows us to create a statement group (with braces) and at the
same time display some data representative of the group - which is something a plain GROUP cannot do.

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 31

3.4.9.1 GROUP FIELD Syntax
Statement consists of a FIELD statement prefixed with the keyword GROUP.

The FP status response consists of a set of bit flags. The GROUP FIELD displays these flags as a batch; that is, it
formats the whole byte as a hex number. (It could, by the way, use the Binary method instead of Hex and display
them in binary notation.) The GROUP FIELD also creates a sub-tree in the Decode Pane. If the user expands the
sub-tree then the items within the group are shown individually.

Here are two snapshots of the Decoder Pane, one showing the sub-tree closed and the other expanded:

Figure 3.9 - GROUP FIELD Collapsed and Expanded

3.4.9.2 RESERVED Syntax
The second new statement seen here is RESERVED. This tells the protocol analyzer to skip over a certain number
of bits that are not used. Nothing is displayed as a result of it.

RESERVED Syntax: Statement starts with the keyword RESERVED followed by a call to a Size Method that specifies
the size of the reserved field.

Finally, for this statement sequence, note the NO_MOVE keyword on the GROUP FIELD statement. This tells the
protocol analyzer not to move the pointer after decoding the field.

3.4.10 START_BIT
There's a bug in our rspStatus group. Here's the code again:

GROUP FIELD rspStatus (Fixed 3 Bits) (Hex) "Status" NO_MOVE
{
RESERVED (Fixed 5 Bits)
FIELD alarm_bit (Fixed 1 Bit) (Binary) "Alarm"
FIELD power_bit (Fixed 1 Bit) (Binary) "Power"
FIELD test_bit (Fixed 1 Bit) (Binary) "Test mode"
}

Notice that the first 5 bits are skipped in the RESERVED statement, and the last three are decoded. The GROUP
FIELD, however, decodes the first three bits in the byte. In order for the GROUP FIELD to decode the correct 3
bits, we need to move the bit pointer 5 bits forward first.

START_BITMethods are used to move the bit pointer forwards and backwards in the layer. The Move method
simply moves the bit pointer backwards or forwards the specified number of bits. Other methods move the
pointer to certain fields, or move the pointer to the beginning or end of the layer.

TELEDYNE LECROY Chapter 3 Structure of a Decoder

32 DecoderScript ReferenceManual and User Guide

3.4.10.1 START_BIT Syntax
A START_BIT clause is placed after the name. The keyword is followed by a call to a StartBit method that serves to
reposition the pointer before decoding of the field starts.

Move Method: Move is a StartBit method that moves the pointer a specified distance from its current position.
The first parameter is a count and the second a unit. If the second parameter is omitted then "bytes" is assumed. If
the count is negative then the pointer is moved backwards; if positive then the move is forwards.

To fix our bug, we'll add a START_BIT (Move 5 Bits) clause to our rspStatus group.

GROUP FIELD rspStatus START_BIT (Move 5 Bits) (Fixed 3 Bits) (Hex) "Status" NO_MOVE
{
RESERVED (Fixed 5 Bits)
FIELD alarm_bit (Fixed 1 Bit) (Binary) "Alarm"
FIELD power_bit (Fixed 1 Bit) (Binary) "Power"
FIELD test_bit (Fixed 1 Bit) (Binary) "Test mode"
}

Now our GROUP FIELD will decode the correct 3 bits.

3.4.11 Comments
Here is some DecoderScript used in decoding sensor commands and responses:

/*
Sensor number. This is a one-byte field. We display it in decimal and verify that it is valid (i.e. in the range

1 to 32).
*/
FIELD sensor_number (Fixed 1) (Decimal) "Sensor Number" VERIFY (FieldIsBetween 1 32)
/* Sensor value. This is a two-byte field. */
FIELD sensor_value (Fixed 2) (Decimal) "Sensor Value"

The new element is the comment. Comments are written as in the C++ programming language, either starting
with "/*" and ending with "*/" or starting with "//" and ending at the end of the line. Comments serve solely to aid
people reading the decoder; the protocol analyzer ignores them.

3.4.11.1 Comment Syntax
A block comment starts with a slash and an asterisk written together and ends with an asterisk and a slash also
written together. A single block comment may extend over several lines.

An end-of-line comment starts with two slashes and ends at the end of the line.

3.5 Finished Fictitious Protocol Decoder
Here's the final version of the Fictitious Protocol Decoder in its full glory:

/* Decoder for FP (Fictitious Protocol) by Manuel Ryder */"FP" 0x7f000000

DECODE

/*
** Table of FP command and response codes.
*/
TABLE tableCommands
{ 0x00 "Request Status" "Request Status"}
{ 0x01 "Set Actuator" "Set Actuator" 0 cmdSetActuator}

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 33

{ 0x02 "Read Sensor" "Read Sensor" 0 cmdReadSensor}
{ 0x80 "Status" "Status" 0 rspStatus}
{ 0x81 "Actuator Set" "Actuator Set" 0 rspActuatorSet}
{ 0x82 "Sensor Value" "Sensor Value" 0 rspSensorValue}
{ Default "???" "(unknown)" 0 Unknown}
ENDTABLE

/*
** Find the value of the first field, but don't display it and
** don't move the pointer.
*/
FIELD command_or_response (Fixed 1) (Hex) SUPPRESS_DETAIL NO_MOVE

/*
** If the value of the command_or_response field is between 0x00
** and 0x022, we know it's a command. If it's between 0x80 and
** 0x82, we know it's a response. The response has an extra
** field that commands don't have, so we create a group and put
** the IF test on the group as a whole. If the test fails, the
** entire group will be skipped.
**
** Unknown commands will fail both tests and branch to the
** Unknown group, which decodes the first byte as an Unknown
** Command or Response.
**
** The IN_SUMMARY puts the result of either field in the same
** Summary pane column.
*/

FIELD command (Fixed 1) IF (FieldIsBetween 0x00 0x02 command_or_response) (TABLE
tableCommands) IN_SUMMARY "Command/Response" 120 "Command"

GROUP response_group IF (FieldIsBetween 0x80 0x82 command_or_response)
{
FIELD response (Fixed 1) (TABLE tableCommands) IN_SUMMARY "Command/Response" 120

"Response"
FIELD response_count (Fixed 1) (Decimal) "Data byte count" VERIFY (FieldIsBetween 1 3)
}

BRANCH (FromTable tableCommands command_or_response)

/*
** Display and verify what should be the checksum.
*/
FIELD checksum (Fixed 1) (Hex) IN_SUMMARY "C'sum" 40 "Checksum" VERIFY (FPChecksum)

END_MAIN_PATH

/*
**
** Common fields. In this section we have FIELD statements for
** fields that are used in multiple places in the decoder.
**
** Actuator number. This is a one-byte field. We display it in
** decimal and verify that it is valid (i.e. in the range 0 to

TELEDYNE LECROY Chapter 3 Structure of a Decoder

34 DecoderScript ReferenceManual and User Guide

** 32, where 0 means "all").
*/
FIELD actuator_number (Fixed 1) (Decimal) "Actuator Number"
VERIFY (FieldIsBetween 0 32)

/*
** Actuator value. This is a two-byte field.
*/
FIELD actuator_value (Fixed 2) (Decimal) "Value to set"

/*
** Sensor number. This is a one-byte field. We display it in
** decimal and verify that it is in the range 1 to 32).
*/
FIELD sensor_number (Fixed 1) (Decimal) "Sensor Number"
VERIFY (FieldIsBetween 1 32)

/*
** Sensor value. This is a two-byte field.
*/
FIELD sensor_value (Fixed 2) (Decimal) "Sensor Value"

/*
**
** Decode commands.
**
*/

GROUP cmdReadSensor
{
FIELD sensor_number ;
}

GROUP cmdSetActuator
{
/*
** We want to display something different if the actuator
** number is 0 (meaning "All Actuators"), so we need to
** process the field first, and then use that field as a
** test for the IF statement.
*/
FIELD actuator_id (Fixed 1) (Decimal) SUPPRESS_DETAIL NO_MOVE

FIELD all_actuators (Fixed 1) IF (FieldIs EqualTo 0 actuator_id) (Constant "All Actuators") "Actuator
Number"

FIELD one_actuator (Fixed 1) IF (FieldIs NotEqualTo 0 actuator_id) (Decimal) "Actuator Number"
VERIFY (FieldIsBetween 1 32)

FIELD actuator_value ;
}

/*
**
** Decode responses.

Chapter 3 Structure of a Decoder TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 35

**
*/

GROUP FIELD rspStatus START_BIT (Move 5 Bits) (Fixed 3 Bits) (Hex) "Status" NO_MOVE
{
RESERVED (Fixed 5 Bits)
FIELD alarm_bit (Fixed 1 Bit) (Binary) "Alarm"
FIELD power_bit (Fixed 1 Bit) (Binary) "Power"
FIELD test_bit (Fixed 1 Bit) (Binary) "Test mode"
}

GROUP rspActuatorSet
{
FIELD actuator_number ;
}

GROUP rspSensorValue
{
FIELD sensor_number ;
FIELD sensor_value ;
}

GROUP Unknown
{
FIELD unknown_cmd_or_resp (Fixed 1) (Hex) IN_SUMMARY "Command/Response" 120 "Unknown

Command/Response Code"
FIELD unknown_data (ToEndOfLayer 1) (StringOfHex) "Data"
}

TELEDYNE LECROY Chapter 3 Structure of a Decoder

36 DecoderScript ReferenceManual and User Guide

Chapter 4 Putting It All Together
4.1 Decoder IDs
All decoders require a unique ID. This ID is used to determine the next protocol in the stack and other internal
housekeeping chores. Decoders can be distributed as plain text, or they can be encrypted. Custom decoders of
either type can only be loaded if the protocol analyzer has been installed with the option that allows creation of
decoders.

4.1.1 Encrypted Decoders
If you plan to distribute your decoder to the general public, or to a large group of people within your own
company, contact your protocol analyzer supplier for a Publisher ID. Publisher IDs are the first two hex digits of
the decoder ID. Be sure to use a different number for each decoder file. Since no one else will have your
Publisher ID, your decoder IDs will be unique.

For example, if your Publisher ID is 0x3045, your first decoder might be 0x30450000, your second 0x30450001,
etc.

If you need to encrypt your decoders, you MUST have a Publisher ID. Contact Frontline to create encrypted
decoder filesets.

4.1.2 Plain Text Decoders
If you don't need to encrypt your decoder and are not planning to distribute to many other people, you don't
need a Publisher ID. Just use Publisher ID 0x0000 followed by a number, and distribute your decoders in plain
text. Using this Publisher ID, decoder numbers 0x00000000 through 0x0000ffff are reserved for plain text
decoders.

4.2 [ProtocolName].personaility Files
[ProtocolName].personality contains information for decoders included with the protocol analyzer. For decoders
that you write, appropriate information should be added to your own [MyProtocolName].personality file in the
My Decoders directory. The part in brackets doesn't have to be the protocol name, but it's a useful way of keeping
track of which personality file goes with which protocol. The personality files for the core product are located in
directories named for each protocol under <installation path>\App Data\Decoders. Each protocol directory
contains the decoders needed for that protocol, as well as a file called [protocol name].personality. We suggest

DecoderScript ReferenceManual and User Guide 37

you take a look at a personality file installed on your system while working through this chapter. Personality files
can be read in any text editor. A sample personality file for the Fictitious Protocol, fp.personality, is located in the
My Decoders directory of the installed product.

Personality files contain several sections. The Rules section defines rules for transitioning from one protocol layer
to the next. The Predefined Stacks section lists predefined stacks that the user can select from the Predefined
Stack selection box in the Protocol Stack Wizard. Port Assignments define which protocol to autotraverse to given
a port number. The Filters section defines filters to appear in the Predefined Filters box in the Filters window.

Other sections you may see in the personality files included with the protocol analyzer are used for starting the
software. If you are writing decoders for serial or Ethernet analyzers, you do not need to pay any attention to the
extra sections. If you are writing decoders for industrial automation analyzers (these analyzers usually have a
launcher where you can select which analyzer to use based on the protocol you want to decode), then see
Appendix 2 on How to Insert Fictitious Protocol into a Fictitous Product for instructions on adding your protocol
decoder name to the launcher.

4.2.1 Rules
The Rules section defines rules for what is called "autotraversal". Autotraversal is the process of switching from
one decoder to the appropriate decoder for the protocol at the next layer. In some cases one protocol always
follows another but, in most cases, data in the current-layer protocol must be used to determine which of several
possible protocols comes next. A few examples should make this concept clear.

Here is a fragment from ip.personality relating to IP. IP is an obvious case study since a large number of protocols
can be used at the next layer.

The rule is defined by the three items in each entry in the list. List items are separated by commas, and there
should be no spaces between list items. The rule is processed until a space, tab, or paragraph character appears.
Anything after a space, tab or paragraph is treated as a comment and ignored for autotraversal purposes.

However, the "Port Assignment Display" section is used to display protocol names on the port assignments tabs in
the "Set Initial Decoder Parameters" dialog. This entry follows a space or tab character after the rule definition,
and must be in the form of:

<this-protocol name><space><dash><space><next-protocol name>.

In the rule definition, the first two items are decoder IDs. In particular, 0x7f000401, as you might guess, is the ID
for IP. The other IDs are for protocols that may follow IP. The third number is a key that links the two. Specifically,
this key is a value that may be returned by the NextProtocol method in IP. In this case, it is actually the value
extracted from the PROT field of the IP header, a code that directly identifies the next protocol. A value of 1
means the next protocol is ICMP and, if you look in the ICMP decoder, you will see that it has an ID of 0x7f000407.
Hence, the first rule.

TELEDYNE LECROY Chapter 4 Putting It All Together

38 DecoderScript ReferenceManual and User Guide

Once a layer in a stack has been decoded, the NEXT_PROTOCOLl method for that layer is invoked. The result,
together with the ID of the current protocol, is used to search the rules table for an entry that will determine
which decoder to use next. As this implies, a key need be unique only within the set of entries for a particular
protocol. You might look at a rule in the following way:

<this-ID>,<next-ID>,<key>

means:

if the ID of the current protocol is <this-ID> and the value returned by its NextProtocol method is <key> then
the next protocol is the one with ID <next-ID>

What happens if there is no match in the rules table for a given ID and key combination? This does not necessarily
imply that anything is wrong; it just means that there is no decoder for the next protocol. It was noted that over a
hundred protocols could follow IP. However, examination of a current ip.personality will reveal far less than one
hundred entries - many decoders have not yet been written!

Another example entry from async.personality is:

0x7f000303,0x7f000302,ALWAYS

As you would guess, the keyword ALWAYS means that the protocol with ID 0x7f000302 (which happens to be
PPP) always follows Async PPP (ID 0x7f000303).

In many other examples, you will see that the second decoder ID and the key are the same. All the entries for TCP
are like this, as in:

0x7f000404,0x7f00040a,0x7f00040a

where the second ID happens to be for NBSS (NetBIOS Session Services). The point is that the key can be anything
that happens to be convenient. With TCP, the actual decoder ID serves well since the protocol is determined by
looking up a port number, see section 4.2.3 Port Assignments on page 40.

4.2.2 Predefined Stacks
The Predefined Stacks section contains the protocol stacks that are listed in the Predefined Stack list box in the
Protocol Stack Wizard. The format of an entry is

<stack-name>,Auto|No,<protocol-ID>,[<protocol-ID>,…]

where:

<stack-name> is the name that appears in the list box.

"Auto" means that autotraversal is to be used and the protocol analyzer should attempt to determine what
protocol comes next in the frame.

"No" means that autotraversal should not be used. In this situation, every frame will be decoded using the
protocol(s) given in the list, in the order they are given. Any frame that does not use the defined stack will be
decoded incorrectly.

<protocol-ID> is the ID of the protocol (if standalone) or the ID of the lowest-layer protocol (if in a stack).

Additional decoder IDs may be appended to an entry to further define a stack. Thus we see:

Frame Relay/HDLC,No,0x7f000101,0x7f000010,
Frame Relay/SNAP,Auto,0x7f000101,0x7f000204,

to differentiate HDLC over Frame Relay and SNAP over Frame Relay.

Chapter 4 Putting It All Together TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 39

Predefined Stacks are sorted into alphabetical order in the program, so it does not matter what order they appear
in the .personality file.

4.2.3 Port Assignments
The job of the Port Assignments section is to return the key used by the Rules section in the personality files by
looking up the port number and returning the value next to it.

NEXT_PROTOCOL (FromPortAssignment TCP src_port dst_port)

The first parameter indicates the port numbers in the TCP section should be used, and the other sections ignored.
The second and third parameters are the field names for the source and destination ports.

Within a section, the format of each entry is

[Port Assignments:section name]
<port number> ,<key>

For example, the section for TCP given in ip.personality is:

[Port Assignments:TCP]
25,0x7f000409
53,0x7f00040d
80,0x7f000408
138,0x7f00040b
139,0x7f00040a
5000,0x7f009006
67-68,0x7f000412

The first value is the port number. Notice that a range of port numbers may be specified and the range is
inclusive. The port number may be either the source or destination port. If a match is found for the port number,
the second value, the key, is returned to the NEXT_PROTOCOL method. The key may be any unique number.

This key is then used during a scan of the Rules section. For TCP, the protocol analyzer uses the next decoder ID as
the key, but we could have just as easily used the port number. Any value can be used as the key. (For various
technical reasons we could not use the port number as the key in the personality files and skip using the Port
Assignments section entirely.)

If you use a port number already listed in the Port Assignments section for a different protocol than the standard
one, you only need to change the entry in the appropriate personality file. Simply change the second decoder ID
(which is the one to traverse to) to the decoder ID for your decoder.

4.2.4 Filters
The Filters section defines filters that will appear in the predefined filter section. This is mostly a convenience for
your users because they can very quickly select a predefined filter and they don't have to think about how to
define it.

The format is

[filter name],[location in tree],[compound filter],Include|Exclude,[bpf string]

where:

[filter name] is the name that will appear in the filters window.

[location in tree] is where you want it to appear in the tree that is used to organize filters in the predefined
window.

TELEDYNE LECROY Chapter 4 Putting It All Together

40 DecoderScript ReferenceManual and User Guide

[compound filter] is the name of the compound filter that this filter is a part of (note that compound filter is rarely
used in predefined filters).

Include|Exclude defines whether the filter should include data that matches the filter or exclude it.

[bpf string] is the filter string in BPF format.

For information on creating filter strings using BPF, see the online Help for the protocol analyzer product.

4.3 What to Send to End Users
A complete decoder package requires the following components:

l The decoder file with a unique decoder ID. The file must have a DEC extension for plain text decoders and DEX
for encrypted decoders. This file must be placed in the My Decoders directory, but can be placed in a
subdirectory under My Decoders. The protocol analyzer reads the My Decoders directory and the user-
defined subdirectories for custom decoders.

l A protocol analyzer product that has the option for creation of decoders if decoders are distributed as DEC
files OR a "fileset" that contains the decoder if it is to be distributed in encrypted form. Please see the
information about filesets at the end of this section.

In certain cases, some or all of the following are required as well:

l A Frame Recognizer method.

l Any other custom methods used by the decoder.

l A magic number for installation of the decoder (encrypted decoders only).

l A [MyProtocolName].personality file.

Methods must be compiled into a DLL and placed in the My Methods directory in order for the decoder to find
them. [MyProtocolName].personality must be placed in the My Decoders directory, but can be placed in a
subdirectory under My Decoders. The protocol analyzer reads the My Decoders directory and the user-defined
subdirectories for custom decoders.

You may also optionally wish to send all or one of the following:

l Pre-defined protocol stack in [MyProtocolName].personality to appear in the Protocol Stack Wizard.

l I/O Settings Configuration file for serial analyzers.

A pre-defined protocol stack may be useful if there are several protocols in your stack and you need them to be
set up in a certain way. If you include a pre-defined stack, your users just need to select that one item in the
Protocol Stack Wizard and you're guaranteed to have the stack set up correctly.

To supply an I/O Settings Configuration, start the protocol analyzer, open the I/O Settings window, and setup the
parameters exactly as you want them to be. Save the configuration. The file will be saved to the My
Configurations\filename.cfg directory by default. Include the CFG file with your decoders and have the user place
it in their My Configurations directory. Once the user starts the protocol analyzer, they will need to open the I/O
Settings window and load the configuration, but once they do, you will be sure what the parameters are set for.

A convenient way to supply all of these components to an end-user, and ensure they are placed in the correct
directories, is to distribute them in a fileset. For more information on filesets and the tools used to create them,
please contact your software vendor's Technical Support department.

Chapter 4 Putting It All Together TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 41

42 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 4 Putting It All Together

Chapter 5 DecoderScript Reference
If you have the relevant background, it may be helpful to think of a decoder as the description of a large table in
which each entry defines a field, a group, or a branch. The protocol analyzer traverses this table starting at the top,
jumps around as instructed, and terminates when it meets an END_MAIN_PATH. If you lack experience with such
languages, don't worry; it is absolutely not required!

Yet another way of looking at DecoderScript is as a statement language that controls the interface between the
protocol analyzer and a set of methods that perform the nitty gritty of decoding.

We now describe each of these reference statements in turn.

5.1 SUPPORTED_SPEC_VERSION
SUPPORTED_SPEC_VERSION is used to provide a simple way to inform the user about the protocol version
supported by the decoder. The syntax is:

SUPPORTED_SPEC_VERSION("Supported AVDTP spec version: v1.3")

The text that is in quotes appears as a tool-tip over the protocol tab in Frame Display.

5.2 BYTE_STREAM_FRAMER
BYTE_STREAM_FRAMER identifies a method that is sort of like a frame recognizer, but it only acts on the data
found at the current layer. Because of this, it has some different needs and is implemented as a different type.
This method is only invoked if the layer that was just decoded (i.e. the previous layer in the stack) has the
PAYLOAD_IS_BYTE_STREAM keyword in it.

BYTE_STREAM_FRAMER is used when the payload of a particular layer is simply a byte stream that the upper
layers know nothing about. For instance, imagine a protocol where the payload is always exactly 50 bytes long,
and the actual messages are split across as many frames as is needed. If all the payloads are clipped out of the
frames and put together, it would resemble the byte stream that comes from a serial port. We would need some
type of recognizer to split that byte stream into intelligible frames, but standard frame recognizers work only on
data that has not previously been framed by any other method.

DecoderScript ReferenceManual and User Guide 43

5.3 FRAME_AFTER_DECODING
FRAME_AFTER_DECODING references a Frame Transformer method that processes a frame after it has been
decoded. Such methods are seldom used but serve a purpose when the decoder for one layer in a protocol stack
needs to mess with the frame to prepare it for the decoder at the next layer.

A subtlety of these methods is that if FRAME_AFTER_DECODING replaces a frame, then any NEXT_PROTOCOL_
SIZE and NEXT_PROTOCOL_OFFSETmethods are ignored and the entire replaced frame is passed to the next
layer. The big subtlety here is that the transformation methods don't always transform; for instance, a stripper
routine that doesn't find a 0x7d in the frame won't do anything to that frame, and then the NEXT_PROTOCOL_SIZE
and _OFFSET will be used for those frames.

In the IP example above, there may be padding at the end of the frame, so we strip off any bytes after the stated
size. Alternately, the payload may be split over multiple frames, and if so, and this frame has the last discovered
fragment, then we assemble all the fragments and send the assembled frame to the next layer instead of the
physical frame.

5.4 FRAME_BEFORE_DECODING
FRAME_BEFORE_DECODING references a Frame Transformer method that prepares the frame for decoding. This
may entail such matters as decryption, decompression, undoing character escaping and byte-stuffing. IP does not
need one of these.

5.5 NEXT_PROTOCOL
NEXT_PROTOCOL is a method that can be used to determine the protocol at the next layer in a stack. In the case
of IP for example, this would determine if the next layer is TCP, UDP, or one of many other less common
possibilities. The method returns a value that is looked up in an personality file to retrieve the standard FTE id for
the next protocol. (Now you know one reason why every protocol is required to have a unique id.)

IP has a field, "protocol", that has a unique value and determines the next protocol to use, so we call a method
that picks that field out.

5.6 NEXT_PROTOCOL_SIZE
NEXT_PROTOCOL_SIZE is a method used to determine the size of the next protocol layer. IP uses a method,
ThisLayerLength, that is passed the name of the field that contains the length (tot_length) and a fixed increment
that is added (zero in this case).

5.7 NEXT_PROTOCOL_OFFSET
NEXT_PROTOCOL_OFFSET is a method used to determine the offset of the next protocol layer. By default the
protocol analyzer assumes that the next layer starts at the next byte in the frame; this is typically the case so a
NextProtocolOffset method is rarely needed.

5.8 PAYLOAD_IS_BYTE_STREAM
PAYLOAD_IS_BYTE_STREAM is used in conjunction with BYTE_STREAM_FRAMER for cases where the payload for
that layer is just one part of a byte stream that includes the payloads from frames before and/or after it. It means

TELEDYNE LECROY Chapter 5 DecoderScript Reference

44 DecoderScript ReferenceManual and User Guide

that the payload of all the coming layers should be considered a continuous stream and the divisions of the
physical frames should be ignored.

For example, assume you have a custom protocol called MyCustomProtocol. This protocol traverses to higher
layers in the stack. The payload for MyCustomProtocol can be split up among several physical frames. In order to
correctly decode MyCustomProtocol, you need to take the MyCustomProtocol payloads from several frames and
string them all together. PAYLOAD_IS_BYTE_STREAM tells the decoder to do this.

Then you need a way to tell when one MyCustomProtocol layer ends and the next begins, very much like a frame
recognizer. For efficiency and technical reasons, we can't use the real frame recognizer, so we created a way to
make a frame recognizer for cases like this. BYTE_STREAM_FRAMER invokes a method that acts as a frame
recognizer for these embedded byte streams.

To use this feature, put the PAYLOAD_IS_BYTE_STREAM keyword in the header of your BYTE_STREAM_FRAMER
keyword in the header and reference a method that can correctly determine when the MyCustomProtocol layer
is finished.

When MyCustomProtocol traverses to IP, the BYTE_STREAM_FRAMER method is invoked and the payloads of the
next frames are joined to the payload of the first frame until the end of the MyCustomProtocol frame is reached.

If MyCustomProtocol should traverse to a protocol that doesn't have the BYTE_STREAM_FRAMER keyword in it,
then the physical packets are the frame boundaries.

5.9 PREPROCESSING
PREPROCESSING references a method that does things before a layer is decoded. Such a preprocessor has access
to the layer data (as transformed by the FRAME_BEFORE_DECODINGmethod if there is one), uninitialized field
values (ai64Field), and inter-frame data. Note that a PreProcessing method cannot make any changes to the
frame; that is the province of the FRAME_BEFORE_DECODINGmethod. You can have multiple PreProcessing
invocations in a decoder. For example:

PREPROCESSING (DoThis)
PREPROCESSING (DoThat)

5.10 POSTPROCESSING
POSTPROCESSING references a method that does things after a layer has been decoded. Such methods serve a
purpose when decoded data needs to be saved for use in decoding subsequent layers or frames. We call such
data "intra-frame data" if it is used across multiple layers within a frame, and "inter-frame data" if it is used across
multiple frames. We might, for example, save a command code so that we can properly interpret a command-
specific reply. As with PREPROCESSINGmethods, you can have multiple POSTPROCESSINGmethods in a decoder.
Note that some simple forms of data are available that don't require POSTPROCESSINGmethods.

5.11 RECOGNIZER
RECOGNIZER identifies a Frame Recognizer for the protocol. This Frame Recognizer will be called only if the
protocol is the lowest in the current stack. This makes it safe to define a recognizer for a protocol that could
appear at different layers in different stacks. In short, you can define a Frame Recognizer for a protocol and be
sure that the protocol analyzer will use it only if and when appropriate.

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 45

5.12 SUMMARY_COLUMNS
SUMMARY_COLUMNS defines the name, order and default column width for the summary columns. This
keyword does not reference a method, but instead references the names of the columns.

The syntax for the SUMMARY_COLUMNS field is:

SUMMARY_COLUMNS
{
"summary_label" width

"summary_label" width
etc.
}

Columns will appear in the order they are listed. The Frame Number, Timestamp, Delta, Length and Bookmark
summary columns can be optionally included in the list using the following keywords: $FRAME_NUMBER,
$TIMESTAMP, $DELTA, $LENGTH, and $BOOKMARK. Do not specify a width when using the special keywords. If
the special keywords don't appear, then the columns are placed in their normal locations (bookmark and frame
number at the beginning, the others at the end.)

For example:

SUMMARY_COLUMNS
{

"Address" 80
 "Command" 145
$DELTA
"Parameter" 90

}

Once you've defined the columns using the SUMMARY_COLUMNS keyword, you still need to include the IN_
SUMMARY keyword on the fields the column data comes from. Use the same column label as given in the
SUMMARY_COLUMNS list. Leave out the column_width field on the IN_SUMMARY.

For example, using the list above as our starting point:

SUMMARY_COLUMNS
{

"Address" 80
"Command" 145
$DELTA
"Parameter" 90

}

DECODE
FIELD cmd (Fixed 4) (Table cmds) IN_SUMMARY "Command" "Server Command"
FIELD address (Fixed 1) (Decimal) IN_SUMMARY "Address" "Address"
FIELD param (Fixed 1) (Decimal) IN_SUMMARY "Parameter" "Command Parameter"

This will create the summary pane output of:

Any summary columns defined in the SUMMARY_COLUMNS list must be defined on the appropriate fields using
the IN_SUMMARY keyword. The reverse is also true. Any fields that use the IN_SUMMARY clause must be listed in
the SUMMARY_COLUMNS list.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

46 DecoderScript ReferenceManual and User Guide

There are two disadvantages to using just the IN_SUMMARY clause. First, the columns are defined in the order
that the fields are encountered in the decoder. The SUMMARY_COLUMNS keyword gives you more control over
the column order. Second, if you define the same summary column name in two fields, the field is reused, but
you still have to supply a default field width. The first field width encountered is the one that will be used, but this
makes it difficult to know at a glance what the default width is.

The last entry in this table has the value Default. This serves as a catchall for values that have no entries. We urge
you to include a default entry for every table except perhaps for small tables that have an entry for every possible
field value.

Whenever a lookup value isn't found, the protocol analyzer will display both the Default entry (if there is one) and
the decimal value it tried to look up.

Our first example showed a particularly simple table. Here is a fragment of another table that makes use of almost
all items. This is from the SMB (Server Message Block) decoder and lists a few of the commands carried by the
protocol:

TABLE commands
{ 0x00 "CREATE_DIRECTORY" "Create Directory" 0 create_new_dir}
{ 0x01 "DELETE_DIRECTORY" "Delete Directory" 0 delete_dir}
{ 0x02 "OPEN" "Open Specified File" 0 open_file}
{ 0x03 "CREATE" "Create New File" 0 create_or_open_file}
{ 0x04 "CLOSE" "Close File And Flush Buffers" 0 close_file}
{ 0x05 "FLUSH" "Flush All File Buffers To Disk" 0 flush}
{ 0x06 "DELETE" "Delete The Specified File" 0 delete_file}
{ 0x07 "RENAME" "Rename File To A New Name" 0 rename_file}

Here each entry consists of five items. We see that the entries are listed in numerical order by field value. The
second item, as before, is a string for display in the Summary Pane; this contains the formal name of the
command. The third item is a more descriptive indication of the command for display in the Decode Pane. If only
one string is given as in the X.25 table above, it is used in both the Summary and Decode Panes. The fourth item is
a number, which in this case is always zero; SMB does not use this item and zeroes are inserted just as
placeholders. This item is called extra table data and is stored as a 64-bit signed integer (which means you can use
negative as well as positive numbers for extra table data). The fifth item, called the branch data, is the name of a
FIELD or GROUP. The only standard use of this field is as the target of a BRANCH that obtains it using the FromTable
method. In principle, however, it could be used in other ways by means of custom methods.

We see that tables can combine lists of strings with lists of processors and even numeric data for use in decoding
fields. It happens that there are few protocol decoders that make use of both the extra data and the branch data.
The HTTP decoder (HTTP.dec) offers a good example of how extra data can be used. It uses the extra data to
distinguish three classes of messages: those that contain URLs, responses and data. Here is the table:

TABLE req_resp
{ 0x4f5054494f4e53 "OPTIONS" "OPTIONS" 1}
{ 0x474554 "GET" "GET" 1}
{ 0x48454144 "HEAD" "HEAD" 1}
{ 0x504f5354 "POST" "POST" 1}
{ 0x505554 "PUT" "PUT" 1}
{ 0x44454c455445 "DELETE" "DELETE" 1}
{ 0x434f4e4e454354 "CONNECT" "CONNECT" 1}
{ 0x485454502f312e30 "HTTP/1.0" "HTTP/1.0" 2}
{ 0x485454502f312e31 "HTTP/1.1" "HTTP/1.1" 2}
{ Default "HTTP data" "HTTP data" 3}
ENDTABLE

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 47

Note that the value entries are simply hexadecimal encodings of the ASCII representations of the commands that
follow. The first few executable statements are:

FIELD type (OneToken 8) (Table req_resp) IN_SUMMARY Token 50 Token

GROUP req_msg IF (MatchTableData req_resp type 1)
{

FIELD req_data (ToTerminatingValue Exclusive 0x0d) (StringOfASCII) IN_SUMMARY URL 120
URL FIELD cr_lf (Fixed 2) (Hex) SUPPRESS_DETAIL GROUP headers ;

}

The initial FIELD extracts the first word of text from the data and looks it up in the table to identify the message
type. The GROUP then decodes all those messages that are given a type of 1 in the table. Similar GROUPs then
appear for types 2 and 3.

You may find the need to construct a table that includes sequences of identical entries, such as:

{ 0x8000 "NATIONAL ADVANCED SYSTEMS"}
{ 0x8001 "NATIONAL ADVANCED SYSTEMS"}
{ 0x8002 "NATIONAL ADVANCED SYSTEMS"}

You can group such a range of entries into one, writing it as:

{ 0x8000 0x8002 "NATIONAL ADVANCED SYSTEMS"}

This is an example from the Internet Sockets table used by the protocol analyzer. By including a second numeric
item at the beginning, an inclusive range can be specified. The lower number must be given first.

Some tables are so large that you might prefer to keep them in files by themselves. And if you want to use a
particular table in two or more different decoders then, almost certainly, you would prefer to keep only a single
copy of it. For such cases, an alternate form of the TABLE statement exists. You will find this example in the TCP
and UDP decoders:

TABLE ports @"ports.tbl"

The @ symbol specifies that the ports table should be read from the named file, which must be stored in the
same directory as the DEC file. In such a case the ENDTABLE statement must appear as the last statement in the
table file.

If you use the branch data item, the field names you use must be put into any decoder that includes that table. If
the branch data is irrelevant to the decoder that uses it, the fields may be defined as dummies like this:

FIELD create_new_dir (Fixed 0) (Decimal) SUPPRESS_DETAIL

That will define the field so the decoder will load, but the field has no effect. The TABLE @ symbol can be used
with another keyword: IGNORE_BRANCH_FIELDS.

TABLE@<FILENAME> IGNORE_BRANCH_FIELDS

This lets you use a table across multiple decoders without bringing in all of the DecoderScript to satisfy the Branch
fields in TABLEs.

Eight types of statements appear in the executable section. Five of them, FIELD, RESERVED, GROUP, GROUP FIELD
and BRANCH, we refer to collectively as executable statements. The sixth, PARAMETER, is a pseudo-field, the
seventh is the INCLUDE keyword and the eighth is END_MAIN_PATH.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

48 DecoderScript ReferenceManual and User Guide

Every statement except BRANCH, RESERVED and INCLUDE defines some kind of protocol field or group of fields
and every such entity must be given a unique name within a decoder. Thus, not only must all FIELDs have unique
names, but you cannot have a FIELD with the same name as a GROUP or a PARAMETER. By convention we use
names that are all lower case and with words separated by underscores. We will examine each statement type in
turn.

5.13 FIELD
A FIELD statement always does the following:

Names a field

Defines the size of that field

Generates material to display the content of the field in the Decode Pane

Normally it also:

Moves the pointer forward to the next field

Optionally it may:

Reposition the pointer prior to decoding

Inhibit updating of the pointer (leaving it pointing to the same field)

Make decoding of the field conditional

Massage the field value before storing it

Display something in the Summary Pane

Check the content of the field

Tag the field for use in filtering and other operations

Invoke a method that verifies a frame check sequence (CRC or checksum)

Store a value in a variable

Formally, the composition of a FIELD statement is as follows:

FIELD field_name
[START_BIT StartBitMethod]
SizeMethod
[<Conditional-Clause>: IF [NOT] BooleanMethod [ELSE_SKIP
SizeMethod] | PRINT_IF [NOT] VerifyMethod]
[<Retrieve-Clause>: RETRIEVE RetrievalMethod [ALSO
RetrievalMethod]*]
[<Processing-Clause>: PROCESSING RetrievalMethod [ALSO
RetrievalMethod]*]
FormatMethod [ALSO FormatMethod]
[IN_SUMMARY|IN_SUMMARY_ONLY|IN_COLLAPSED "summary_tag"
column_width]
"detail_tag" | SUPPRESS_DETAIL
[<Tag-Clause>: TAG "tag"]
[MARGIN_TEXT FormatMethod]
[INFO]
[NO_MOVE]
[HOST_DATA_ORDER | NETWORK_DATA_ORDER]

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 49

[<Verify-Clause>: VERIFY|SUPPRESS_IF_VERIFIED [NOT]
VerifyMethod [ALSO [NOT] VerifyMethod]]
[<Store-Clause>: STORE variable_name [<Retrieve-Clause>]]

Keywords are shown in all capitals. Optional components are shown in square brackets. Elements in angle
brackets are compound components that are described below.

The FIELD statement, as defined here, may seem terribly complicated but, as we have seen in the tutorial, most
FIELD statements are really rather simple and straightforward because most or all optional components are
unneeded.

Here is the composition of a FIELD with all optional parts omitted:

FIELD field_name SizeMethod FormatMethod "detail_tag"

We will now examine each element in turn. We will start with the required components and then list the optional
ones in the order in which they appear.

5.13.1 field_name
A unique name is required for every FIELD even if that name is never referenced.

5.13.2 SizeMethod
The second required item is the invocation of a method that determines the size of the field. For a field of fixed
size we will have something like:

FIELD command_code (Fixed 1 Byte) (Hex) "Command code"

The Fixed method takes a first parameter that is a numeric count and a second parameter that expresses the unit.
Acceptable units are bits, (4-bit) nibbles, (8-bit) bytes, (16-bit) words, (32-bit) dwords, and (64-bit) qwords. The
unit specifier may be written in singular or plural form (e.g. "bit" or "bits") as appropriate.

The other commonly used method for sizing a field serves when the size is given by the content of another field,
as in:

FIELD data_length (Fixed 1 Byte)
FIELD data (FromField Bytes data_length 2)

Here we suppose that a one-byte field indicates the size of the variable-length field that follows. The FromField
method takes three parameters. The first is the unit (as above). The second parameter is the name of the FIELD
that contains the length. The third is a number that is subtracted from the result since, in some cases, the length
field includes or excludes other things (for example, itself). We call this number an adjustment.

Note that the field containing the length must be processed before the FromField method is called.

A complete catalog of methods is provided in the Method Reference.

It may help your understanding of the mechanics of the decoder to know that what a SizeMethod returns is simply
a number of bits. That number is used in extracting the field value from the raw frame data, formatting the field
value, and incrementing the pointer. This does not mean, however, that you can put a literal number in this item;
a method invocation is required.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

50 DecoderScript ReferenceManual and User Guide

5.13.3 FormatMethod
The next required item is the FormatMethod. This is the invocation of a method that formats the field value for
display in the Frame Display window. The value may be displayed in the Decode Pane, the Summary Pane, the
collapsed decode line, or all of these. Common formatting methods include Decimal and Hex which encode
integers in the appropriate base, and Table which looks up the value in a table to find a corresponding string.
There are also methods for formatting character data and various other things.

The size of the field (as defined by the SizeMethod) is available to formatting methods so you can depend on
appropriate significance in the encoding. Thus with a field to be formatted as a character string, the formatting
method knows how many characters it should process; it does not look for a terminator or anything like that.

Note that a FormatMethod must be included even if, by virtue of a subsequent SUPPRESS_DETAIL keyword,
nothing is actually displayed.

5.13.4 detail_tag
The last required item is either the label to be used for displaying the field value in the Decode Pane or the
keyword SUPPRESS_DETAIL, which prevents the field from being displayed.

We now list optional components of the FIELD statement.

5.13.5 START_BIT, StartBitMethod
If we need to move the pointer to get it pointing to the field to be decoded then we include a START_BIT clause.
We put the START_BIT keyword after the field name plus a call to a suitable method. Here is an example:

FIELD start_again START_BIT (FromStart 0 Bytes)

This is used to reposition the pointer to the start of the layer in the midst of a decode when we have a need to
reprocess certain fields. Note that, as the name here implies, we must give a new name to a field that we
reprocess in this way. Several methods are provided for repositioning the pointer. The one used here selects a
position relative to the start of the layer expressed, as usual, as a count plus a unit specifier. Similarly the method
FromEnd allows us to reposition relative to the end of frame. The Move method moves a fixed number of bits or
bytes forward or backward from the current position. And the MoveToField method repositions to a named field.

5.13.6 Conditional Clause
A conditional clause takes one of two rather different forms:

IF [NOT] BooleanMethod [ELSE_SKIP SizeMethod]
PRINT_IF [NOT] VerifyMethod

The first style is used to make the entire processing of the field conditional: if the condition is met then the field is
decoded and otherwise it is skipped. With the second style the field is always processed and the condition
governs only whether it is displayed or not. This distinction leads to an important semantic difference between
the two: An IF clause is evaluated before the field value is obtained while a PRINT_IF is evaluated after.

Conditional clauses are optional and, on any FIELD statement, only one type (IF or PRINT_IF) may be used. We will
now examine each in deeper detail.

IF [NOT] BooleanMethod [ELSE_SKIP SizeMethod]

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 51

The keyword IF introduces the first style of conditional clause. The IF is followed by a call to a Boolean Method
with an optional intervening NOT. A Boolean Method is one that makes some test and returns True or False.

Here is a good example:

FIELD fmt_length (Fixed 1 Byte) (Decimal) "Format Length"
FIELD fmt (FromField Bytes fmt_length 0) IF NOT (Fieldis EqualTo 0 fmt_length) (StringOfHex 32)

"Format Data"

This example shows a way of dealing with a variable-length field where the length is given by another field. If the
length is zero then the second field does not actually exist. The conditional clause is:

IF NOT (FieldIs EqualTo 0 fmt_length)

The FieldIs method makes a numeric comparison of the value in a named field (fmt_length in this case) with a
given constant (0 here). Note that the result of the test is complemented by virtue of the NOT; we want to
process the field only if the length is not zero. Actually, the clause could equally well be written:

IF (FieldIs NotEqualTo 0 fmt_length)

You may find times that you want to use an IF and skip some amount of data if the test fails. An IF clause can be
extended to allow this as in this example taken from the Van Jacobson Compressed headers decoder (VJC.DEC):

FIELD Seq (Fixed 1 Bit) IF (TestTableData Special Special) ELSE_SKIP (Fixed 1 Bit) (Decimal) IN_
SUMMARY Seq 40 Seq

Here a particular bit is meaningful only when another field has been set in a certain way (as tested by the
TestTableData call). To use this option on an IF, place the keyword ELSE_SKIP after the call to the Boolean Method
and follow that by a call to a Size Method that determines how much data is to be skipped.

PRINT_IF [NOT] VerifyMethod

This form of conditional clause is triggered by the PRINT_IF keyword. The condition is tested by a VerifyMethod
and the test may be reversed by the presence of a NOT.

A VerifyMethod is like a BooleanMethod in that it returns True or False. A different set of testing operations is
provided though, mostly functions to test the value obtained for the field.

Here is an example from the SMB decoder. SMB makes extensive use of bit flags and, to make them stand out, the
decoder generally displays such flags only when they are set. (Flags that are not set are assumed to be of no
interest.)

FIELD case (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Pathnames Are Caseless") "Bit 3"

5.13.7 <Retrieve-Clause>
The optional Retrieve Clause allows you to modify the field value as it is retrieved from the raw data. The data
might, for example, need to be masked in some way; the bits might need to be rearranged; or you might want to
scale the value for easier handling. In any event, a Retrieve Clause may be used only for fields that are 64 bits in
size or smaller. The format of a Retrieve Clause is:

RETRIEVE RetrievalMethod [ALSO RetrievalMethod …]

It is introduced by the RETRIEVE keyword. The clause lists at least one Retrieval Method and may include any
number separated by the ALSO keyword. Each Retrieval Method performs some transformation on the field
value.

Consider this FIELD statement:

TELEDYNE LECROY Chapter 5 DecoderScript Reference

52 DecoderScript ReferenceManual and User Guide

FIELD year_mfr (Fixed 1 Byte) (RETRIEVE AddInteger 1980) (Decimal) "Year of manufacture"

This converts a year expressed as an offset from 1980 into a full 4-digit number. In some cases, such as this one,
you may need to consider carefully whether it would be easier to convert the value when retrieving it or in the
process of formatting it. If you choose to convert the data when formatting it then you may have to write a custom
FormatMethod for the purpose. Bear in mind that, when you convert data, the altered value will appear only in
the Decode and Summary Panes. The original data (the "real" data if you will) will still show up in the Binary, Radix,
Character and Event Panes.

There could be times when you want to perform multiple operations on a field value. And, as we said, you can do
just that by stringing multiple Retrieval Methods together using the ALSO keyword. The functions are applied in
the order (left to right) that you specify. You might, for example, want to construct a field composed of the eighth
bit of three consecutive bytes while throwing the rest of the bits away. SplitField is a method that allows you to
specify the number of bits on the right to keep, and the number of bits to remove from the middle. The method
then shifts the remaining bits to the right. For example:

FIELD three_bits (Fixed 3 Bytes) RETRIEVE (SplitField 1 7) ALSO (SplitField 2 7) ALSO (SplitField 3 7)
(Hex) "Three bits"

Assume that the data in the three bytes is 000000010000000100000001.

After the first SplitField, the data looks like: 00000001000000011.

After the second SplitField, the data looks like: 0000000111.

After the third SplitField, the data looks like: 111, which is the 8th bit in each byte put together.

Standard Retrieval Methods also include functions for doing arithmetic with values in other fields. Another use for
a Retrieve method is to gain a hook into each field as it goes by.

Because the method is called every time we see a field, in both the compiling and the retrieval stages, you can call
a custom retrieve method that uses inter-frame data to record some information about what is being decoded.
You must be careful, though, because your method is called more than once for the same field. If you want to get
a hook into each field only during compilation, use the PROCESSING construct described below.

5.13.8 <Processing-Clause>
The optional Processing Clause allows you to gain control when the frame is first compiled. It is similar to the
Retrieve Clause, with the following differences:

1. Processing clauses can be used on fields larger than 64 bits, where Retrieve clauses can only be used on
fields 64 bits in size or smaller.

2. The Processing clause is executed only once and is always executed when the frame is first compiled. The
Retrieve clause is executed only when the frame is displayed in the protocol analyzer and so is
unpredictable both in the number of times it is executed and when it happens.

Processing clauses are most useful when you need to grab a value and save it as inter-frame data. You can string
several Processing clauses together using the ALSO keyword, just as you can with Retrieve clauses.

The format of a Processing Clause is:

PROCESSING ProcessingMethod [ALSO ProcessingMethod …]

There are currently no standard Processing methods.

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 53

5.13.9 ALSO Format Method
This optional clause allows you to display a field value in two different formats or together with a label of some
kind. It must immediately follow the call to the primary FormatMethod. The result of the second FormatMethod
is displayed after the first one with a space separating them.

The ALSO clause works well when you want to display a field value and add a unit specifier to it, as in:

FIELD port_speed (Fixed 2 Bytes) (Decimal) ALSO (Constant "bps")

5.13.10 ALSO Verify Method
Same as ALSO FormatMethod except that it allows you to call two Verify Methods for one field.

5.13.11 IN_SUMMARY "summary_tag" Column Width
The next optional FIELD component is the IN_SUMMARY clause. This is used when we want the field displayed in
the Summary Pane on the Frame Display and in the summary line when a protocol is collapsed in the main
window of the Protocol Navigator. As already discussed, we use the summary line to show the most critical data in
a layer, data that summarizes what the layer is doing. The keyword IN_SUMMARY is followed by the name of the
Summary Pane column that we want the data to show up in and the default width in pixels for this column. In the
Protocol Navigator, the column name is used as the label. Here is an example reprised from the FP decoder.

FIELD command_code (Fixed 1 Byte) (Table tableCommands) IN_SUMMARY "Command/Response"
150 "Command"

The user is free to change the width of any column by manually adjusting it on screen. Note that you can put the
contents of more than field in the same Summary column. For example, we could put the Command and
Response in the same Summary column.

FIELD command_code (Fixed 1 Byte) IF (FieldIs EqualTo 1) (Table tableCommands) IN_SUMMARY
"Command/Response" 150 "Command"

FIELD response_code (Fixed 1 Byte) IF (FieldIs EqualTo 0) (Table tableCommands) IN_SUMMARY
"Command/Response" 150 "Response"

There are two additional keywords that can be used in place of the IN_SUMMARY keyword. These restrict the
summary line display to either just the Summary pane or just the Protocol Navigator.

IN_SUMMARY_ONLY - the field will appear only in the Summary pane on the Frame Display

IN_COLLAPSED - the field will appear only in the Protocol Navigator

NOTE: If you used the SUMMARY_COLUMNS option at the top of your decoder, do not include the column_width
field above. Including the column_width in this case will cause a syntax error when the decoder is loaded.

5.13.12 SUPRESS_DETAIL
This optional keyword appears in place of the detail tag. Used when you don't want to display the contents of the
field in the Decode pane.

5.13.13 <Tag-Clause>
The optional Tag Clause is introduced by the keyword TAG followed by a Tag method. Tagging a field is necessary
for some new features that are not yet available. For example, it is anticipated that tracking information will be

TELEDYNE LECROY Chapter 5 DecoderScript Reference

54 DecoderScript ReferenceManual and User Guide

gathered for tagged fields and users will be able to filter on tagged fields or use them as triggers. At the present
time, however, tagging a field doesn't do anything useful but does no harm either.

5.13.14 MARGIN_TEXT Format Method
When this keyword is present, the output of the field is put into the margin of the Protocol Navigator window,
next to the frame number. Be careful using this keyword, as the margin text includes the contents of any field
encountered with this keyword in any protocol contained in the frame. The margin is a fixed size and if too many
fields try to put information in the margin, some of it may not be displayed.

5.13.15 INFO
The presence of this optional keyword causes the field output to be duplicated in a node called "Information" at
the top of the Decode pane on the Frame Display. The Information line is displayed directly under the Errors line
(if one is present). Users can filter on the presence of the Information node, search for frames containing the
Information node and hide it.

5.13.16 NO_MOVE
The optional NO_MOVE element tells the protocol analyzer not to update the pointer after processing the field.
This is useful when you want to process a field twice and when you want to process a field out of sequence. If you
have a FIELD with both a START_BIT and a NO_MOVE then the pointer is left where it was before the FIELD was
processed, not at the start of the field. If you think about it, this is what is needed for a situation where you want to
peek at a field ahead of the pointer.

5.13.17 HOST_DATA_ORDER | NETWORK_DATA_ORDER
Include this item if the field should be decoded using a data order other than the default established by the
protocol identification statement in the Header Section (Refer to The Header Section on page 12). You may of
course include it anyway to document how the field is encoded.

5.13.18 <Verify-Clause>
The optional Verify Clause allows you to invoke a method to check the value in the field. You can compare it with a
constant or with the content of another field, validate it as a CRC or checksum or, with a custom method, check it
in any other way you might need. In all cases (with standard methods, at least) the test can be reversed by
including a NOT (as in an IF clause). The format of the clause is:

VERIFY|SUPPRESS_IF_VERIFIED [NOT] VerifyMethod [ALSO [NOT] VerifyMethod]

The clause is usually introduced by the keyword VERIFY followed by a call to a Verify Method with an optional NOT
in between. A Verify Method not only performs a check but, if the check fails, also generates some text indicating
what the result of the check should be; this message is then displayed in the Decode Pane. In addition, when the
check fails, the entire field is displayed in the Errors section of the Decode Pane and in red instead of the usual
black.

You may add a second check to a Verify Clause by following the basic part with the keyword ALSO and a second
call to a Verify Method with an optional NOT.

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 55

An alternative form of the Verify Clause is introduced by SUPPRESS_IF_VERIFIED. When this keyword is used,
everything is done as described above except that the field is displayed only if the check fails (and then of course
in red). This is useful for dealing with fields that "should" always contain a certain fixed value.

An example from the IP decoder shows a check that the protocol version number is at least 4:

FIELD version (Fixed 4 Bits) (TABLE ver_nums) "Version" VERIFY (FieldIs GreaterThanOrEqualTo 4)

Another extract from the IP decoder gives an example of using two verification checks:

FIELD ihl (Fixed 4 Bits) (Decimal) IN_SUMMARY IHL 30 "Header Length" VERIFY (FieldIs
GreaterThanOrEqualTo 5) ALSO (IsNoMoreThanLayerInDwords)

Here a length field is checked both for a minimum value (5) and for consistency with the layer length.

And an example taken from the Ethernet decoder illustrates the use of a Verify Method to check a CRC. ("FCS"
stands for Frame Check Sequence.)

FIELD fcs START_BIT (FromEnd 4) (Fixed 4) (Hex) FCS NO_MOVE VERIFY (Check_CrcCRC32 0
0xFFFFFFFF Swap)

5.13.19 <Store-Clause>
The optional Store Clause allows you to copy the current field value into what is essentially a variable. The format
is:

STORE variable_name [<Retrieve-Clause>]

Syntactically a variable name is the same as a field name. In fact, a variable is implemented as a special kind of
field, a field that just has a value and a size. (Note that a proper field also has an offset associated with it, along with
formatting options.) Like most data-holding entities, a variable holds a 64-bit value which, of course, means that
you can only STORE the value for a field that is 64 bits or less.

A variable is defined by its use. In other words, you create a variable by writing its name in a Store Clause - and
that is the only way to create one. You use a variable just as you would use a field - by passing its name as a
parameter to a suitable method. Here is an example:

FIELD string (FromField Bytes my_variable) (StringOfAscii) "String"

Here we have a field that contains a character string of variable length. The Size Method FromField indicates that
the length of the field, in bytes, is the value of the field called my_variable, which is really a variable. Now you may
well ask, why is a variable needed here? Surely you can pick up the length of the string directly from the field that
defines it? The answer is best given by an example. Suppose that the string may be very, very long. And that its
length may be defined by a one-byte or a two-byte field depending on what it takes, as in:

FIELD s1_or_2 (Fixed 1 Bit) (Binary) SUPPRESS_DETAIL
FIELD len_1 (Fixed 1 Byte) IF (FieldIs EqualTo s1_or_2 0) (Decimal) "Length of string" STORE string_

length
FIELD len_2 (Fixed 1 Word) IF (FieldIs EqualTo s1_or_2 1) (Decimal) "Length of string" STORE string_

length
FIELD string (FromField Bytes string_length) (StringOfAscii) "String"

This DecoderScript fragment decodes three successive fields. The first field is a single bit that indicates whether
the next field, which contains the length of the character string, is a byte (0) or a word (1). The IF clauses on the
next two statements ensure that the next field is decoded appropriately and that the correct length of the string is
stored into the variable string_length. The final statement then decodes the string itself.

Now you might possibly wonder why you could not code this sequence as:

TELEDYNE LECROY Chapter 5 DecoderScript Reference

56 DecoderScript ReferenceManual and User Guide

FIELD s1_or_2 (Fixed 1 Bit) (Binary) SUPPRESS_DETAIL
FIELD string_length (Fixed 1 Byte) IF (FieldIs EqualTo s1_or_2 0) (Decimal) "Length of string"
FIELD string_length (Fixed 2 Bytes) IF (FieldIs EqualTo s1_or_2 1) (Decimal) "Length of string"
FIELD string (FromField Bytes string_length) (StringOfAscii) "String"

This bypasses the variable and would simply decode a field called string_length as a one- or two-byte value as
appropriate. If it worked that is. In practice, it fails because the string_length field has two definitions and that is
forbidden. The only solution is to use a variable and this is exactly the type of thing that variables are intended for.

The optional Retrieve Clause within the Store Clause allows you to perform some transformations on the field
value prior to storing it in the variable. For example, assume you have a 2 bit field. The value of the field indicates
the length of the data according to the following table:

Value Length

0 1 byte

1 2 bytes

2 4 byte

3 8 bytes

Table 5.1 - Data Length for Field Values

You need to decode the field and somehow get the right value in the something called "length" so you can use it
later. You could do a bunch of IF tests and then store each field into a variable called "length" or you could use a
nifty method called ReplaceWithExtraData, which replaces the value in the field with the extra data from a table.
Here's the table and decoder you could use:

TABLE length_table
{ 0 "" "1 byte" 1}
{ 1 "" "2 bytes" 2}
{ 2 "" "4 bytes" 4}
{ 3 "" "8 bytes" 8}
ENDTABLE
FIELD length_index (Fixed 2 Bits) (Table length_table) "Length" STORE length RETRIEVE

(ReplaceWithExtraData length_table)

The lifetime of a variable is from the first encounter with it through the end of the decoding of a layer. This is what
programmers call its scope. This means that, if you are careless, you can use a variable before setting it. Should
you do so, no error will occur, but the value obtained will be garbage. Note that you cannot use variables to pass
data to the decoder for another layer nor to a future instance of your own decoder (that is effectively to the
decoding of a subsequent frame). Instead you must use what we call a Decoder Data Object.

5.14 Field Order of Statement Processing
There may be situations where you need to consider in what order the various components of a FIELD statement
are processed. Mostly they are done in the order in which they appear, but there are exceptions. So, here is the
order of execution:

1. Any IF condition is tested. If this tests false and an ELSE_SKIP exists, then the ELSE_SKIP is processed.
Otherwise the rest of the steps are skipped.

2. Any StartBit method is called.

3. The Size Method is invoked to determine the size of the field.

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 57

4. If the field size is 64 bits or less, then the value is extracted.

5. If the field size is 64 bits or less, any Retrieve Clause is processed to massage the value.

6. If the field size is 64 bits or less, any Store Clause is processed.

7. Any PRINT_IF condition is tested and if it proves false then the next 2 steps are skipped.

8. If an IN_SUMMARY is included then the value is formatted for the Summary Pane.

9. The value is formatted for the Decode Pane, unless the keyword SUPPRESS_DETAIL is present.

10. Any Verify Method is called. If the VERIFY is part of a PRINT_IF, the PRINT_IF is then processed.

11. Any NO_MOVE is processed

One item of interest that becomes clear from this list is that an IF clause cannot test the value or size of the
current field.

5.15 FIELD field_name;
Finally on the topic of FIELDs, there is one alternative form of the statement that we must discuss. We observed
that every field must have a unique name. But suppose you have a field that appears repeatedly in different
threads of your decoder. If the meaning of the field is identical and you want its value displayed uniformly in all
cases then you can define a FIELD for it once and then reference that repeatedly using the form:

FIELD field_name ;

The semi-colon tells the analyzer to look up a FIELD defined elsewhere with the given name and use that. The full
definition of the field may be placed in any suitable position in the decoder. The full definition need not even be
inline. (That is it can be placed somewhere where control would never reach - that is, after the END_MAIN_PATH
statement and not within the target of a BRANCH.)

5.16 RESERVED
The RESERVED statement allows you to define a field that is skipped in the decoding process. Nothing is displayed
for a reserved field in either the Decode or Summary Pane. The syntax is:

RESERVED SizeMethod

The SizeMethod is exactly as for a FIELD. Conditionals, VERIFYs and other such things are not allowed on RESERVED
statements. If you have a field that you want to value check but not display by default then you could use:

FIELD reserved (Fixed 1 Byte) (Hex) "Reserved" SUPPRESS_IF_VERIFIED (MustBe 0)

This will process a one-byte reserved field and check that its value is zero. If the value matches zero then, by
virtue of the IF clause, the field will be skipped and nothing displayed. If the value is not zero then the field will
appear in the Decode Pane in red.

5.17 GROUP
The GROUP statement allows you to batch a sequence of fields together into a group for hierarchical display in the
Decode Pane. A typical case where this might be used is in displaying a set of bit flags, as in this example from the
SMB decoder:

TELEDYNE LECROY Chapter 5 DecoderScript Reference

58 DecoderScript ReferenceManual and User Guide

GROUP share_access "Share Access"
{

FIELD reserved_5_bits ;
FIELD share_delete (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Delete Access") "Share

Access"
FIELD share_write (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Write Access") "Share

Access"
FIELD share_read (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Read Access") "Share

Access"
FIELD reserved_3_bytes ;

}

The composition of a GROUP statement is as follows:

GROUP group_name [START_BIT StartMethod] [IF [NOT] BooleanMethod SizeMethod] [REPEAT
COUNT|SIZE|UNTIL Method] ["detail_tag"]

{

element
element
…

}

The optional START_BIT and IF clauses work exactly as for a FIELD. The following sections define these fields.

5.17.1 REPEAT COUNT | SIZE | TRUNCATED_FIELD_OK | UNTIL Method
The optional REPEAT clause is used with a qualifying keyword, COUNT, SIZE or UNTIL plus an appropriate method.

REPEAT COUNT is used when the group is to be repeated a known number of times. A Size Method is used to
indicate the number as in:

GROUP seven_things REPEAT COUNT (Fixed 7 Times) "Seven things"

Be careful here because the value returned by a sizing method is a number of bits. If you wrote instead:

GROUP seven_things REPEAT COUNT (Fixed 7) "Seven things"

then the GROUP would be repeated 56 times! (That's because the default unit for the Fixed method is bytes.) The
best thing to do is always use the "Times" for the units in Repeat Count clauses.

If the repeat count is the value of a field then use the FromField method as in:

GROUP n_things REPEAT COUNT (FromField Times thing_count 0) "Things"

REPEAT SIZE is used when a group is repeated an unknown number of times to process a known amount of data.
A Size Method is used to define the span of the repeated group. Suppose, for example, we have a protocol in
which a layer can contain an arbitrary number of variable-length commands terminated by a one-byte checksum.
Then you would use something like:

GROUP master_command REPEAT SIZE (ToEndOfLayer 1)

ToEndOfLayer returns the number of bits left up to the end of the layer minus the number of bytes given as the
parameter. So in this case it will return the number of bits left excluding a one-byte checksum. The GROUP is then
repeated until this number of bits has been processed.

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 59

When processing REPEAT SIZE, you can think of the number of bytes inside the repeat loop as a self-contained
sub-layer. If you try to access bits past the end of that layer, then an error will be reported in the decode. This is
usually a sign that either your decoder is faulty or that the frame that was passed in was damaged. In either case,
the error is a useful indication. It is possible to imagine a case, however, where it is not desirable to display an
error if the group is truncated. The optional keyword, TRUNCATED_FIELD_OK, suppresses that error.

REPEAT UNTIL is used in combination with a Boolean method. Here is an example from the HTTP decoder:

GROUP headers REPEAT UNTIL (CurrentDataMatches 16 0x0d0a)

The CurrentDataMatches method checks for a given value at the pointer. This particular group repeats until a 16-
bit quantity matches hexadecimal 0D0A (that is a CR+LF in ASCII).

5.17.2 Detail Tag
The detail tag on a GROUP is optional (unlike a FIELD). The choice of including one or not has one important effect
as illustrated in the following examples:

GROUP str "Structure"
{

FIELD str_code (Fixed 1 Byte) (Hex) "Structure code"
FIELD str_size (Fixed 1 Byte) (Decimal) "Structure size"
FIELD str_data (FromField Bytes structure_size 0) (StringOfDecimal 10) "Structure data"

}

Here the GROUP has a detail tag. This gives rise to an expandable branch in the Decode Pane as shown in Figure
5.1 - :

Figure 5.1 - GROUP with Detail Tag

Remove the "Structure" tag and the expandable branch goes away. The items within the group are displayed as
leaves of the current branch as shown in Figure 5.2 - :

Figure 5.2 - GROUP without Detail Tag

The GROUP statement serves one vital purpose that has nothing to do with actually grouping fields. This stems
from the terribly useful fact that you can have a GROUP without a detail tag. Then nothing appears for it in the
Decode Pane and it serves purely as an IF statement, as in:

GROUP early_dialect IF (FieldIs EqualTo 2 word_count)
{

GROUP andx ;
FIELD byte_count ;
FIELD tree_andx_service ;

TELEDYNE LECROY Chapter 5 DecoderScript Reference

60 DecoderScript ReferenceManual and User Guide

}
GROUP late_dialect IF (FieldIs EqualTo 3 word_count)
{

GROUP andx ;
FIELD optional_support (Fixed 2) (Hex) "Optional Support"
FIELD byte_count ;
FIELD tree_andx_service ;

}

The GROUP statements check the value of the FIELD word_count. If the word_count is 3, the FIELD optional_
support is present. If the word_count is 2, FIELD optional_support is not present. Since the GROUPs have no detail
tags, nothing is displayed for them.

There is no ELSE mechanism so you must create the effect by using contrasting GROUPs. To extend the above
example, you might add:

GROUP other_dialect IF NOT (FieldIsInRange word_count 2 3)
{

GROUP andx ;
FIELD byte_count ;

}

5.17.3 GROUP FIELD
The GROUP FIELD statement allows you to combine some of the best features of a GROUP with those of a FIELD.
This allows you to display an expandable group in the Decode Pane with a value on the entry.

A GROUP FIELD statement is composed of a FIELD statement with the keyword GROUP on the front. Any element
that is valid for a FIELD statement is valid for a GROUP FIELD.

GROUP FIELD field_name [remaining elements follow those for a FIELD]
{

element
element
…

}

Note that groups do not have sizes. The SizeMethod item defines the size of the field, not the group as a whole.

A typical use is to display a set of bit flags, as in this example:

GROUP FIELD status_byte (Fixed 3 Bits) (Binary) "Status" NO_MOVE
{

FIELD active_flag (Fixed 1 bit) (Binary) "Active flag"
FIELD overflow_flag (Fixed 1 bit) (Binary) "Overflow flag"
FIELD error_flag (Fixed 1 bit) (Binary) "Error flag"

}

Note the NO_MOVE flag on the GROUP FIELD. The resulting display in the Decode Pane resembles Figure 5.3 - :

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 61

Figure 5.3 - Bit Flags with GROUP FIELD

The combined value of the flags is always revealed but they are not shown individually (which takes a good bit of
vertical screen space) unless the branch is expanded. This is especially a good means of handling such a field when
all the flags are zero except in a few rare cases.

Here is a contrasting example:

GROUP FIELD response (Fixed 1 Byte) (Table Responses) "Response"
{

FIELD data_count (Fixed 1 Byte) (Decimal) "Count of data bytes" VERIFY (MustBe 1)
FIELD data (Fixed 1 Byte) (Decimal) "Data"

}

This is used to display a three-byte sequence consisting of a response code, a byte count (which must have the
value one), and a response-specific data byte. The resultant display is similar to:

Figure 5.4 - GROUP FIELD from Table

Imagine a protocol message that carries a sequence of such responses. As it first opens, the Decode Pane shows a
list of responses (e.g. "Gear" in our case) and any one of them can be expanded to see the details.

5.18 BRANCH
The BRANCH statement allows transfer of control to a given FIELD, GROUP or GROUP FIELD. The format is either:

BRANCH (BranchMethod)

where BranchMethod is a method that resolves to the name of a field or group,

or

BRANCH IF (BooleanMethod) yes_field no_field

where control goes to the yes_field if the condition is true and the no_field if the condition is not true. The yes_
field and no_field items may be field names or group names.

The name "branch" may be slightly misleading. The effect is more like that of a GOSUB in BASIC or an "execute"
command in certain languages. The statement that is the target of the branch is performed and then control
returns to the statement following the BRANCH. If the target is a FIELD then that single statement is performed. If
the target is a GROUP or GROUP FIELD then that statement along with any enclosed within its brace block are
performed.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

62 DecoderScript ReferenceManual and User Guide

BRANCH is used in combination with a Branch Method. As an example, consider a protocol that carries a large set
of commands, each of which needs its own set of decoder statements. Then we can put the names of the GROUPs
that process the commands in a table and call them as in this example:

BRANCH (FromTable command_table command_code)

In this case, the value in the field named command_code is looked up from the table named command_table and
uses the branch item in the matching table entry as the target for the BRANCH. If an entry without a branch item is
referenced in this way then the BRANCH becomes a no-operation - no branching is done and processing
continues with the next statement in line.

BRANCH IF is used in conjunction with a Boolean Method to determine which of two field/group statements to
decode. For example, assume that the contents of a field defined whether the bytes that follow are a command
or a data stream. If the field contains a zero, a data stream follows, and if the field contains a number greater than
zero, the number is the number of the command. Our branch statement would look like this:

DECODE

FIELD data_or_command (Fixed 1) (Decimal) SUPPRESS_DETAIL

BRANCH IF (FieldIs EqualTo 0 data_or_command) data command

END_MAIN_PATH

FIELD data (ToEndOfLayer 0) (StringOfHex 24) "Data"

GROUP command
{

[command fields]

}

In this situation, if the data_or_command field contains a zero, the data field will be decoded, otherwise the
command group will be decoded.

5.19 PARAMETER
This script defines a runtime parameter for the decoder. You can think of it as a field that the user can directly
change on the fly. This is used when the stream of data (or the capture file we are decoding) does not have
enough information to allow the decoder to figure out everything. An example is a protocol that can have 8 bit
fields on one installation and 16 bit fields on another. We could write two identical decoders except for the size of
the bit fields, but that is unwieldy and hard to maintain. Instead, we can let the user tell us which installation
he/she has.

Here is the PARAMETER statement:

PARAMETER field_name user_prompt [verify_clause | list_clause] default_value [ALWAYS_ASK |
NEVER_ASK | ASK_IF_NOT_DEFINED]field_name

field_name

This is exactly like the field name in the FIELD statement. In fact, all the PARAMETER statement does is define a
field, but it is a field that is not dependant on the data in the frame.

user_prompt

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 63

Since the value of the parameter is set by the user, the user must be prompted for the value. This string is the text
of that prompt.

There are two types of parameters: lists and numbers. The following two optional clauses define which type of
parameter this is. If neither is present, then the parameter is a number. When the user is prompted for a list-type
parameter, a combo box is presented to the user, so that only the values requested can be entered. When the
user is prompted for a number-type parameter, an edit box is presented and the user must type in a number.

verify_clause is:

VERIFY VerifyMethod

This makes sure that the 64-bit integer that the user enters meets the desired criteria.

list_clause is:

LIST { item … }

This defines a list of legal values that the parameter can take. The user is prompted with this list.

default_value

This is the value that the parameter should take if the decoder is not told differently by the user. It can also be
thought of as the "starting value". If a list was defined, this item is one of the members of that list, otherwise it is a
number.

ALWAYS_ASK

If this is present, then every time the decoder is loaded, the user is asked to enter the parameter. This is useful if
the parameter is always changing and you need to make sure the user is always aware of it.

NEVER_ASK

If this is present, then the user is never asked for the parameter value. The user can always go to the parameter
menu and change it, but doesn't have to. This is used when the parameter has a good default value that only
needs to be changed rarely. Most users will never notice it.

ASK_IF_NOT_DEFINED

If this is present, then the user is asked for the parameter the first time the decoder is loaded, then never asked
again. The user can always find the parameter in the menu and change it. This is used when the parameter is
important to a particular environment, and the testing unit isn't going to leave that environment.

Note that there are two ways to do the following common case:

What if you needed a parameter that was the size in bytes of a particular field and the only legal values are 1,2, or
3? You could use either of the following statements:

PARAMETER field_size "Size of field (in bytes)" VERIFY (FieldIsBetween 1 3) 1
PARAMETER field_size "Size of field (in bytes)" LIST { 1 2 3 } 1

Which is better? It is up to you. The first will present the user with an edit box and the user can type in any value.
If the value is not between 1 and 3, then an error message pops up and the user can choose another value. The
second will present the user with a combo box with only the items 1, 2, and 3 in it, so the user can't possibly pick
an illegal value. In this case, we think that the second way is better, but what if the user could pick a number
between 1 and 30? The combo box would seem clunky to the user.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

64 DecoderScript ReferenceManual and User Guide

Parameter values are kept in a file in the same directory as the .DEC file, with the same name and the extension
.INI. If this file is deleted, all the parameters revert to their defaults. Capture files store the parameters used to
capture the data in the file, and will always load those parameters rather than the ones in the INI file.

5.20 INCLUDE
The keyword INCLUDE allows you to put some of the code in a different file. After the INCLUDE keyword should
be a filename to be inserted at that point in the decoder. The file can contain tables and/or fields. The file must be
in the same directory as the DEC file. By convention we use the extension .DH, but any extension except for DEC
or DEX is ok.

For example:

INCLUDE commandtable.dh

Files should not be included in more than one place in the decoder, as this will result in duplicate table or field
definitions in most cases.

5.21 INCLUDE_IF_EXISTS
The keyword INCLUDE_IF_EXISTS is exactly like INCLUDE except that the included file does not have to exist in the
"\Frontline\My Decoders\" directory. If the file is found, it will be included. If the file is not found, no error will be
generated. Frontline widely employs this keyword to allow customers to optionally include their own
DecoderScript in Frontline decoders. For more information on how to use this powerful feature, see Appendix F.

For example:

INCLUDE_IF_EXISTS commandtable.dh

will include the file commandtable.dh if it exists.

5.22 END_MAIN_PATH
The mandatory END_MAIN_PATH statement marks the end of the main sequence of executable statements
(roughly the equivalent of the "main program" in many programming languages). For each layer, executable
statements will be processed starting at the first that appears and stopping when END_MAIN_PATH is reached.
Any statements that appear after the END_MAIN_PATH will be processed only if referenced by a BRANCH or by a
FIELD statement of the form "FIELD <name>;". By the same token, any statements that play the role of
subprograms should be placed after the END_MAIN_PATH.

5.23 Intra-Frame and Inter-Frame Data
Intra-frame data is used when you need to use or display a value from a lower layer in a higher layer decoder.
Inter-frame data is used when you need to use a value from a prior frame in the current frame. A major
difference is that the intra-frame data is saved for the duration of the frame; inter-frame data is saved until it's
changed or we run out of frames. By contrast, the STORE keyword discussed earlier stores data only for the
duration of the layer. We'll start by talking about intra-frame data.

5.23.1 Intra-Frame Data
Intra-frame data are actually special RETRIEVE methods that take one parameter: the name the data should be
referenced by, which we'll call the "intra-frame data name". This isn't a parameter in the traditional sense of an

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 65

input to the method, it's more like a variable name. Each field you save must have a unique name. This name is
used to tag the data to be saved, and is referenced by both the method that saves the data and the method that
retrieves it.

A good example of intra-frame data use is in the IP and HTTP decoders. In the HTTP decoder, we wanted to display
the source and destination IP addresses in the Summary pane because we felt it would be helpful to see that
information along with the HTTP information. To do this, we need to save the values of the source and destination
IP addresses when they are decoded in the IP layer, and then retrieve them for display in the HTTP layer. Intra-
frame data is the right choice for this type of situation because we have no need of the IP addresses once the
frame has been fully decoded.

5.23.1.1 Storing Intra-Frame Data
The first step is to save the source and destination address in the IP decoder (IP.dec). The method used to save
intraframe data is StoreIntraframeField, and it is used in a RETRIEVE clause on the field to be saved. The method
name is followed by the intra-frame data name.

Here is a code fragment from the IP decoder, showing how the method is used to save the field values.

FIELD src_addr (Fixed 4 Byte)
RETRIEVE (StoreIntraframeField source_ip_address) (IPAddress) IN_SUMMARY Source 90 "Source

Address"
FIELD dest_addr (Fixed 4 Byte)
RETRIEVE (StoreIntraframeField destination_ip_address) (IPAddress) IN_SUMMARY Destination 90

"Destination Address"

5.23.1.2 Retrieving Intra-Frame Data
Now that the addresses have been saved in the IP layer, we need to get it back so we can display it in the HTTP
layer. The method used to retrieve intra-frame data is simply called IntraframeField, and it too references the
name of the data to be retrieved.

Here is the code from the HTTP decoder (HTTP.dec) showing how the source and destination IP addresses are
retrieved and formatted for display in the Summary pane.

/* Display Source and Destination IP Addresses, but only in Summary pane. */
FIELD source_ip (Fixed 0)
RETRIEVE (IntraframeField source_ip_address) (IpAddress) IN_SUMMARY "Source IP" 100

SUPPRESS_DETAIL
FIELD dest_ip (Fixed 0)
RETRIEVE (IntraframeField destination_ip_address) (IpAddress) IN_SUMMARY "Dest IP" 100

SUPPRESS_DETAIL

Notice that the field size is (Fixed 0). When retrieving data, we shouldn't specify a field size because the retrieved
data isn't present anywhere in the current layer. Retrieved data can be used for other purposes besides display in
the Summary pane. Once retrieved, you can use the field value as you would any other field value in the decoder.

5.23.2 Inter-Frame Data
Inter-frame data is used when you need to save a value between frames. The value is saved in the FRM file. This
file has the same name as the capture file with a FRM extension, and it is located in the same directory as the
capture file. The FRM contains all frame related information, including any context sensitive information and inter-
frame data.

An example of a protocol type that would require inter-frame data is one where a master sends out a request and
gets a response from a slave, but the response doesn't reference which request it's responding to. In order to

TELEDYNE LECROY Chapter 5 DecoderScript Reference

66 DecoderScript ReferenceManual and User Guide

decode the response correctly, you need to know the request code from the previous frame. (This example
doesn't reference a real decoder, but the basic problem is not uncommon.) To make our example complete,
assume that the master has an address of 0x00 and slaves have addresses ranging from 0x01 to 0xFF. Our decoder
will check the address byte and decode it as a request if it comes from the master and as a response if it comes
from a slave.

5.23.2.1 Storing Inter-Frame Data
The first step is tagging the field we want to save. Just as with intra-frame data, inter-frame data uses a special
RETRIEVE method to identify the field to be saved, along with an inter-frame data name. The StorePersistentField
method stores the value in the field to the FRM file. Here's our sample request field:

FIELD request (Fixed 1) RETRIEVE (StorePersistentField request) (Table request_codes) "Request"

5.23.2.2 Retrieving Inter-Frame Data
Now on the next frame, we need to retrieve the value of the request field so we can use it in decoding the
response. Use the PersistentField method to retrieve inter-frame data.

FIELD request_code (Fixed 0) RETRIEVE (PersistentField request) SUPPRESS_DETAIL

Here's the full decoder, using our request and request_code fields. Assume the first byte in the frame is the
address. If the data is a request, the second byte is the request code, followed by any additional data that may be
required. If the data is a response, the bytes after the first contain the data requested. There's a 2 byte CRC on the
end of each frame.

DECODE

TABLE request_codes
{ 0 "Send" "Send File" 0 send_file}
{ 1 "Rcv" "Receive File" 0 receive_file}
{ 2 "Ack" "Acknowledge Receipt of File" 0 ack}
{ DEFAULT "Unknown"}
ENDTABLE

FIELD address (Fixed 1) (Hex) "Address"

GROUP frame_is_request IF (FieldIs EqualTo 0x00 address)
{

FIELD request (Fixed 1) RETRIEVE (StorePersistentField request) (Table request_codes) "Request"
BRANCH (FromTable request_codes request)

}

GROUP frame_is_response IF (FieldIs NotEqualTo 0x00 address)
{

FIELD retrieved_request_code (Fixed 0) RETRIEVE (PersistentField request) (Table request_codes)
"Request Responding To"

BRANCH (FromTable request_codes retrieved_request_code)
}

FIELD crc16 (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcCRC16 0 0xffff)

END_MAIN_PATH

GROUP send_file
{

Chapter 5 DecoderScript Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 67

GROUP send_request IF (FieldIs EqualTo 0x00 address) "Send File Request"
{
[FIELDs here]
}

GROUP send_response IF (FieldIs NotEqualTo 0x00 address) "Send File Response"
{
[FIELDs here]
}
}

If you need to do something more complex with your inter-frame data, such as matching values from more than
one field before deciding what to return, you will need to write a custom data object. These objects and how to
write them are described in Chapter 9 Decoder Data Objects on page 123.

TELEDYNE LECROY Chapter 5 DecoderScript Reference

68 DecoderScript ReferenceManual and User Guide

Chapter 6 Methods
In this chapter we present an introduction to different types of methods that are available. A detailed reference
guide to the methods is provided in the Appendices; please refer to that when you write a decoder. The Method
Reference Appendix gives a listing of every method, its parameters and a description, often with examples, of
how to use the method and what it does. All the methods referenced in this section are located in the
DecoderScript Sample Methods.mth file in the My Methods\Source directory of the installed product. Many of
these methods are actual methods used by the protocol analyzer, so we have altered the method names by
inserting underscores before and after the names to ensure that if you compile them, they will not collide with
existing methods.

In what follows we discuss each method type and list the contexts in which methods of the type may be used.

6.1 Boolean Methods
Boolean methods return a value of True or False. They are supplied for use in IF (and PRINT_IF) clauses in FIELD
and GROUP statements, and in REPEAT UNTIL clauses in GROUPs.

6.2 BranchMethods
Branch Methods are used in BRANCH statements. The return value of a Branch Method is (effectively) the name of
a FIELD, GROUP, or GROUP FIELD to which a branch is to be made. In all cases the resultant statement is executed
and then control is returned to the statement following the BRANCH.

There are two main types of Branch methods. The first branches from a table, and the second branches based on
whether the data is from the DTE or DCE side. This latter method is used in serial connections, mostly for master-
slave type circuits where there is nothing in the data to distinguish between a command sent by the master and a
response sent by the slave. In this case, the monitoring protocol analyzer must be placed such that the data from
the master and slave appear on the expected sides of the circuit.

6.3 Format Methods
FormatMethods are used to encode field values for display in the Frame Display window. The field value is
implicitly passed to each method, as is the field size. The value that the method returns is a string.

DecoderScript ReferenceManual and User Guide 69

Most of the methods that format single numeric values work with quantities of up to 64 bits. This applies to Binary,
Decimal, Hex, IP Address, Octal and Time. If you try to use, say, Decimal to display the value of a field that is larger
than 64 bits an error will be generated. Should you find a need to display a value that is larger than 64 bits as, say,
a decimal then you would need to write a custom method for the purpose.

The StringOfXYZ methods can be used to display data from fields that are potentially larger than 64 bits. The
StringOf methods may have unexpected results when used in conjunction with a RETRIEVE method, since they
look directly at the data in the layer and not at the altered contents of the field. This is especially true when used
with intra-frame methods, since the StringOf method will not look at the retrieved data value but will look at
whatever happens to be below the bit pointer in the layer.

You can string two Format methods together using the ALSO keyword. For example, if you had a Field that
contained the temperature and you wanted to make sure it was clear that the temperature was in Fahrenheit,
you could write:

FIELD temperature (Fixed 2 Bytes) (Decimal) ALSO (Constant "Fahrenheit") "Temperature"

You can string together two Format methods but not more than that.

6.4 NextProtocol Methods
These methods are used when protocols are layered so that, when decoding one layer, the protocol at the next
higher layer can be identified and its data isolated. There are actually three categories of NextProtocol methods:

Method Description
NextProtocol methods that identify the protocol at the next layer

NextProtocolOffset methods that determine the offset of the next layer

NextProtocolSize methods that determine the size of the next layer

Table 6.1 - NextProtocol Methods

We will now survey each category in turn.

6.4.1 NextProtocol
A NextProtocol Method returns a value that determines the protocol at the next layer. This return value is not the
ID of the protocol in the decoder, but a number that is looked up in the appropriate personality file in order to
obtain the decoder ID.

6.4.2 NextProtocolOffset
A NextProtocolOffset Method determines the number of bytes between the end of the current layer and the
start of the next. In all but a very few cases the next layer immediately proceeds the current one. In other words,
the offset is almost always zero - that is the default and no NextProtocolOffset Method need be used.

There are no standard NextProtocolOffset Methods.

6.4.3 NextProtocolSize
A NextProtocolSize Method returns the size of the next layer in bytes. Such a method is required only in
circumstances when the next layer occupies less than the rest of the total frame. One common case is when the

TELEDYNE LECROY Chapter 6Methods

70 DecoderScript ReferenceManual and User Guide

frame is terminated by a CRC.

6.5 RetrievalMethods
Retrieval Methods are used in RETRIEVE clauses in FIELD statements when the field value and/or size is to be
modified. They can also be used as subordinates in STORE clauses. Retrieval Methods are applicable only for fields
of size 64 bits or less.

You can string two or more RETRIEVE clauses together using the ALSO keyword. You should not repeat the
keyword RETRIEVE for subsequent method invocations. For example, assume you have a field that contains a
signed decimal, which is a temperature in Fahrenheit. You are converting a decoder for use in your international
offices and want to display the temperature in Celsius. First you need to make the value into a signed decimal and
then perform the calculations. The result would look like:

FIELD temperature (Fixed 2 Bytes) RETRIEVE (SignExtension 16 Bits) ALSO (SubtractInteger 32)
ALSO (MultiplyInteger 5) ALSO (DivideInteger 9) (Decimal) "Temperature"

The number of RETRIEVE clauses you can string together with ALSO is unlimited.

6.6 Size Methods
Size Methods are used to define the size of fields and in REPEAT COUNT and REPEAT SIZE clauses on GROUPs.
Every FIELD and GROUP FIELD definition must include an invocation of a Size Method. The most commonly used
are Fixed and FromField; in many decoders you will not need any other. Note that any size method returns a
count of bits.

6.7 StartBit Methods
START_BIT clauses invoke methods that reposition the pointer prior to field processing.

6.8 Tag Methods
Tag Methods are used in TAG clauses, and typically return whatever is passed in to them.

6.9 Verify Methods
These methods are used in VERIFY clauses. In practice, Verify Methods are used for two purposes: verifying
checksums and CRCs, and validating the values in fields. We will examine Verify Methods broken down into these
two groups. In principle, Verify Methods could also be applied to other kinds of internal consistency checks, for
example verifying that two length fields are consistent.

A verify function returns True or False; when False is returned then the field is displayed in red in the decode and
text explaining the error is appended to the method's output string.

As with Retrieve methods, you can string together multiple Verify methods using the keyword ALSO.

6.9.1 Checksum/CRC Methods
These methods calculate a certain function over all the bytes in the layer and check the result. They do not take
any parameters and make no explicit use of the current field value (with one exception,
Checksum1sComplement16bit). Because of this it would be possible to apply one of these methods on any FIELD

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 71

at all; nevertheless we put them only on CRC and checksum FIELDs because that is where we want a
checksum/CRC failure to be signaled.

It is worth repeating that all the standard methods (with the exception of Checksum1sComplement16bit) perform
their check over the entirety of the layer assuming that the last byte/word/dword (as appropriate) contains the
sender's check. Should you need to verify a CRC over some sub-portion of a layer then you will need to supply a
custom method for the purpose.

It is never valid to include a NOT in a VERIFY clause when using a checksum/CRC method. (Including a NOTwill not
generate an error but the NOTwill be ignored.)

6.9.2 Field-Validation Methods
These methods are used to validate the value in a field. All these methods may be preceded in the VERIFY clause
by a NOT.

6.10 A Method Sample
Methods are written as C++ functions within a framing structure of proprietary statements. Here is an example of
a FormatMethod that formats a certain kind of date:

FORMAT
METHOD __MyFormatDate__
/*

** MyFormatDate is called for a three-byte field

** comprising, byte by byte:
** year (0 - 255, relative to 1900)
** month (1 - 12)
** day (1 - 31)

*/
CODE
{

static const char *keyMonth[13] =

{"???", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

int iYear, iMonth, iDay;
iYear = ((int)i64CurrentField & 0xFF) + 1900;
iMonth = ((int)i64CurrentField >> 8) & 0xFF;
if (iMonth > 12) iMonth = 0;
iDay = (int)i64CurrentField >> 16;
if (eParam1 == eDash)
csOutput.Format("%d-%s-%d", iDay, keyMonth[iMonth],
iYear);
else
csOutput.Format("%d/%d/%d", iMonth, iDay, iYear);

}
ENDCODE
PARAM "Format Preference" list {Dash Slash} = Dash

The variable i64CurrentField is a 64-bit integer that holds the value of the current field, that is the field decoded
by the FIELD statement from which this method is invoked. i64CurrentField is one of several values that can be

TELEDYNE LECROY Chapter 6Methods

72 DecoderScript ReferenceManual and User Guide

used by any FormatMethod. Others include the size of the field and a boolean indicating whether the result of the
formatting is destined for the Summary Pane or the Decode Pane. The result of the format goes into an output
variable called csOutput, an object of the type MFC CString.

Our MyFormatDate method has one parameter that determines whether the date is formatted as, for example,
"30-May-2001" or "5/30/2001". The parameter is declared in the very last line, not at the start as you might
expect:

PARAM "Format Preference" list {Dash Slash} = Dash

This says there is a parameter of type list with a default value of "Dash". Note that the parameter is not given a
formal parameter name; rather, it is known by the fixed name eParam1.

6.11 The Method Context
The context of a method is defined by:

l Its parameters

l The input values available to it

l The output variables that it sets

l Intra-frame and/or inter-frame data

l Other resources available to it (for example, functions for accessing Tables)

The input values (like i64CurrentField), output variables (like csOutput), and other resources are defined
according to the method type. You are free to choose parameters for your methods as you please.

6.12 Notation for Constant/Variable Names
We use a form of Hungarian notation for names of input constants and output variables. In the case of
i64CurrentField, for example, the "i64" preface tells you that the value is a 64-bit signed integer. Every scalar
name starts with a one-, two-, or three-character tag that defines its type (in the C++ sense). These tags are:

b Boolean

byt Unsigned Byte (8-bit)

cs String object

i Signed Integer (32-bit)

i64 Signed Integer (64-bit)

An array name has an initial 'a' for array followed by one of the tags above. Thus abytLayer is an array of bytes. All
arrays used are one-dimensional.

We add the following additional tags as appropriate:

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 73

bit Bit

byt Byte

frm Frame

n Number of

ofs Offset (may be in bits or bytes)

siz Size (always in bits)

Variable Notations

Thus aisizbitField is an array of integers that hold sizes (of fields) in bits, inbytTruncated is an integer that holds a
count of bytes (that have been truncated), and ifrmofsbitLayerStart is an integer that holds a bit offset (of the start
of a layer) within a frame.

6.13 CString and CArray Objects
Methods make use of objects from two Microsoft Foundation Classes (MFC), CString and CArray. For information
about such objects please refer to Microsoft's documentation. In addition, some types based on CArray are
defined. These are:

typedef CArray<CString,CString&> AString;
typedef CArray<int,int> Aint;
typedef CArray<UINT,UINT> Auint;
typedef CArray<__int64,__int64&> Aint64;
typedef CArray<UCHAR,UCHAR> Abyte;
typedef CArray<unsigned short,unsigned short> Aushort;
typedef CArray<void*,void*> Apvoid;
typedef CArray<bool,bool> Abool;

6.14 Method Inputs
Here we present a complete catalogue of the input data available to methods. We start with a list of values, given
in alphabetical order, and then have a table indicating which of the values each type of method can use.

Most of the descriptions of these values make sense only within the domains of methods that need them. Many,
for example, refer to the "current field" which is relevant only to methods called from executable DecoderScript
statements.

Some of these values are bit or byte offsets of various things (such as the current field). Except where otherwise
stated, such offsets are always offsets within the current protocol layer.

Note that most of these items are declared "const". Methods are prohibited from having side effects, including
writing to files; in particular they are not permitted to change anything except designated output variables. As a
result, in the context of a method, most of these values are readable but not writable. The only exceptions are
i64FieldValue and iFieldSize, which serve as both inputs and outputs to Retrieval Methods.

TELEDYNE LECROY Chapter 6Methods

74 DecoderScript ReferenceManual and User Guide

6.14.1 Method Input Definitions
#define abFieldHasData(field) is a macro that indicates whether or not the data for the given field is present in
the ai64Field array. It is implemented as a macro for convenience but may be treated as if it were defined as a
Boolean array (as implied by its Hungarian prefix).

const UCHAR * const abytLayer is a byte array that holds the undecoded data for the current layer. Thus
abytLayer[0] is the first byte of the layer and so on.

const Aint64& ai64Field is an array of field values for the current layer. This allows you to read the value for a
given field if you know that field's index and provided, of course, that that field has already been decoded. For a
field with index i, if abFieldHasData[i] holds true then ai64Field[i] holds the value for the field; otherwise the value
is wider than 64 bits and must be extracted directly from abytLayer. Note that the only reliable way to get a field's
index is to pass the field in as a parameter.

const Aint& aisizbitField is an array that holds the size of each decoded field in the current layer. As always this is
the size in bits. It is indexed in the same way as ai64Field.

const bool bCurrentFieldHasData holds true if the value of the current field is contained in the i64CurrentField
and false otherwise. As noted elsewhere, the value of a field is extracted into i64CurrentField only when its size is
64 bits or less; if it is wider than 64 bits then any method that needs the value must retrieve it from abytLayer.
bCurrentFieldHasData is the same as (isizbitCurrentField <=64), but it's better to use bCurrentFieldHasData
because the definition of whether the current field has data may change in future versions.

const bool bHostDataOrder contains true if the bytes of the current field are designated as being in host data-
order and false if they are in network data-order. Note that this value is relevant only to multi-byte fields in the
abytLayer array; any value in i64CurrentField and ai64Field has already been normalized.

const bool bIsSummary is available only to FormatMethods. It holds true if the method is being called to produce
output for the Summary Pane and false for the Decode Pane.

const bool bNot is available only to Verify Methods. It holds true if and only if there is a "NOT" in the verify clause.
(You may wonder why bNot does not apply to Boolean Methods as well since any call to a Boolean Method can be
prefixed by a NOT. The answer is that a NOT in the Boolean context is handled behind the scenes; in other words,
the protocol analyzer internally complements the output of a Boolean Method when that is appropriate. A Verify
Method, by contrast, needs to know if a NOT is present because, when the test fails, it is supposed to generate a
string for display in the Decode Pane noting what the result should have been.)

const __int64 i64CurrentField holds the value retrieved for the current field if that value is 64 bits or less in size.
The boolean bCurrentFieldHasData can be used to check whether i64CurrentField contains the field value or not.
If it does not then any method that needs the value must extract it from the abytLayer array.

__int64 i64FieldValue holds the value that is propagated through a series of Retrieval Methods. It is both an input
and an output. The iFieldSize value indicates its size.

const int iDrf contains meta-information about the frame that was not transmitted but collected by Frontline
hardware and firmware. The meaning of these bits varies by ComProbe device and is subject to change. Consult
with Frontline technical support.

int iFieldSize holds the size of i64FieldValue as it is propagated through a series of Retrieval Methods. It is both an
input and an output.

const int ifrmofsbitLayerEnd contains the offset within the frame of the last bit of the current layer. This offset
does not take account of any truncation (see section on Truncated Frames below).

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 75

const int ifrmofsbitLayerStart holds the bit offset of the current layer within the frame. Since every layer is
constrained to starting on a byte boundary, the value in ifrmofsbitLayerStart always equals (ifrmofsbytLayerStart *
8).

const int ifrmofsbytLayerStart holds the byte offset of the current layer within the frame.

const int iofsbitCurrentPosition is the bit offset of the working position in the layer. This offset corresponds to "the
pointer" that we described in the chapter on DecoderScript. (We do not call it a pointer here because it is not a
pointer in the sense of C but it does effectively point to the current bit.) This value differs from iofsbitCurrentField
in certain subtle but important ways. At times their values are the same but at the end of the processing of a FIELD
statement, for example, iofsbitCurrentPosition is updated according to the size of the field and the presence or
absence of a NO_MOVE.

This value is used mostly in StartBit Methods, the output of which serve directly to update iofsbitCurrentPosition.

const int iofsbitCurrentField holds the bit offset of the start of the current field.

#define iofsbitFieldStart() provides the bit offset of each decoded field. You might expect this to be an integer
array but it is actually implemented as a macro for internal convenience. You can use iofsbitFieldStart much like an
array with a field index; just remember to use round instead of square brackets.

const int iofsbytCurrentPosition holds the offset of the byte corresponding to iofsbitCurrentPosition.

const int inbytAvailableLayer contains the number of data bytes that have been stored for the current layer. For a
more thorough explanation, see the section below on Truncated Frames.

const int inbytFullLayer holds the original full length, in bytes, of the current protocol layer. This may differ from
the available length as explained below in the section on Truncated Frames.

const int inbytLeftInAvailableLayer holds the number of bytes stored for the current layer from the current
position. If the current field starts on a byte boundary then the count includes that byte; otherwise it starts at the
next byte. inbytLeftInAvailableLayer may differ from inbytLeftInFullLayer for reasons explained in Truncated
Frames below.

const int inbytLeftInFullLayer holds the number of bytes in the current layer from the current position. If the
current field starts on a byte boundary then the count includes that byte; otherwise it starts at the next byte. For
reasons explained in Truncated Frames below inbytLeftInFullLayer may differ from inbytLeftInAvailableLayer.

const int inbytTruncated holds the number of bytes truncated in the current layer. Most often this is zero but see
the discussion under Truncated Frames below.

const int isizbitCurrentField contains the size of the current field, that is the value returned by the Size Method for
the field. As ever, this is the size in bits.

const int iStream holds the index of the current data stream. The first stream is numbered 0, the second 1, and so
on. The protocol analyzer has the potential to support multiple streams.

As of this writting streams have the following values:

l Bluetooth® BR/EDR: 0 = Slave and 1 = Master

l Serial: 0 = DTE and 1 = DCE

l Industrial protocols: Single Stream (0)

l Ethernet: Single Stream (0)

l USB: Outframe = 0 (host→ device) and Inframe = 1 (device → host)

TELEDYNE LECROY Chapter 6Methods

76 DecoderScript ReferenceManual and User Guide

const __int64 evnFrameNumber holds the frame number of the frame currently being decoded.

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 77

6.14.2 Method Input by Method Type
Each of the following tables lists the Method Inputs for a specific Method. Method Inputs are linked to the Input
definition.

Method Input Tables

6.14.2.1 Boolean Method Inputs 78

6.14.2.2 Branch Method Inputs 79

6.14.2.3 ByteStreamFramer Method Inputs 80

6.14.2.4 Format Method Inputs 81

6.14.2.5 FrameTransformer Method Inputs 83

6.14.2.6 NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size) 84

6.14.2.7 PostProcessing Methods Inputs 85

6.14.2.8 PreProcess Method Inputs 86

6.14.2.9 Processing Method Inputs 86

6.14.2.10 Retrieval Method Inputs 88

6.14.2.11 Size Method Inputs 89

6.14.2.12 StartBit Method Inputs 90

6.14.2.13 Verify Method Inputs 91

6.14.2.1 Boolean Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

Table 6.2 - BooleanMethod Inputs

TELEDYNE LECROY Chapter 6Methods

78 DecoderScript ReferenceManual and User Guide

Input Construct Comment

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from
the current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the
current position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentField int holds the bit offset of the start of the current field

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.2 - BooleanMethod Inputs(continued)

6.14.2.2 Branch Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the given field is
present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current layer.

aisizbitField Aint& an array that holds the size of each decoded field in the current
layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as being in host
data-order and false if they are in network data-orde

Table 6.3 - BranchMethod Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 79

Input Construct Comment

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and firmware. The
meaning of these bits varies by ComProbe device and is subject
to change.

evnFrameNumber __int64 holds the frame number of the frame currently being decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the current
layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored for the
current layer

inbytFullLayer int holds the original full length, in bytes, of the current protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from the
current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the current
position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.3 - BranchMethod Inputs(continued)

6.14.2.3 ByteStreamFramer Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the given field is
present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current layer.

aisizbitField Aint& an array that holds the size of each decoded field in the current
layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as being in host
data-order and false if they are in network data-orde

Table 6.4 - ByteStreamFramerMethod Inputs

TELEDYNE LECROY Chapter 6Methods

80 DecoderScript ReferenceManual and User Guide

Input Construct Comment

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and firmware. The
meaning of these bits varies by ComProbe device and is subject
to change.

evnFrameNumber __int64 holds the frame number of the frame currently being decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the current
layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored for the
current layer

inbytFullLayer int holds the original full length, in bytes, of the current protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from the
current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the current
position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.4 - ByteStreamFramerMethod Inputs(continued)

6.14.2.4 Format Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for
the given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the
current layer.

aisizbitField Aint& an array that holds the size of each decoded field in
the current layer

ai64Field Aint64& an array of field values for the current layer

Table 6.5 - Format Method Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 81

Input Construct Comment

bCurrentFieldHasData holds true if themethod is being called to produce
output for theSummary pane and false for the
Decode pane

bHostDataOrder bool true if the bytes of the current field are designated
as being in host data-order and false if they are in
network data-orde

bIsSummary bool true if the value of the current field is contained in
the i64CurrentField and false otherwise

i64CurrentField __int64 holds the value retrieved for the current field if that
value is 64 bits or less in size

iDrf int contains meta-information about the frame that was
not transmitted but collected by Frontline hardware
and firmware. Themeaning of these bits varies by
ComProbe device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of
the current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the
frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the
frame

inbytAvailableLayer int contains the number of data bytes that have been
stored for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytTruncated int holds the number of bytes truncated in the current
layer

iofsbitCurrentField int holds the bit offset of the start of the current field

iofsbitFieldStart() #define provides the bit offset of each decoded field

isizbitCurrentField int contains the size of the current field, that is the
value returned by the SizeMethod for the field

iStream int holds the index of the current data stream

Table 6.5 - Format Method Inputs(continued)

TELEDYNE LECROY Chapter 6Methods

82 DecoderScript ReferenceManual and User Guide

6.14.2.5 FrameTransformer Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from
the current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the
current position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.6 - FrameTransformer Method Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 83

6.14.2.6 NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size)

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the given field is
present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current layer.

aisizbitField Aint& an array that holds the size of each decoded field in the current
layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as being in host
data-order and false if they are in network data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and firmware. The
meaning of these bits varies by ComProbe device and is subject
to change.

evnFrameNumber __int64 holds the frame number of the frame currently being decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the current
layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored for the
current layer

inbytFullLayer int holds the original full length, in bytes, of the current protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from the
current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the current
position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.7 - NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size)

TELEDYNE LECROY Chapter 6Methods

84 DecoderScript ReferenceManual and User Guide

6.14.2.7 PostProcessing Methods Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from
the current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the
current position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.8 - PostProcessingMethods Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 85

6.14.2.8 PreProcess Method Inputs

Input Construct Comment

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytTruncated int holds the number of bytes truncated in the current layer

isizbitCurrentField int contains the size of the current field, that is the value
returned by the SizeMethod for the field

iStream int holds the index of the current data stream

Table 6.9 - PreProcessingMethods Inputs

6.14.2.9 Processing Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

Table 6.10 - ProcessingMethod Inputs

TELEDYNE LECROY Chapter 6Methods

86 DecoderScript ReferenceManual and User Guide

Input Construct Comment

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bCurrentFieldHasData bool true if the value of the current field is contained in the
i64CurrentField and false otherwise

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

i64CurrentField __int64 holds the value retrieved for the current field if that value
is 64 bits or less in size

i64FieldValue __int64 holds the value that is propagated through a series of
Retrieval Methods

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

iFieldSize int holds the size of i64FieldValue as it is propagated through
a series of Retrieval Methods

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentField int holds the bit offset of the start of the current field

iofsbitFieldStart() #define provides the bit offset of each decoded field

isizbitCurrentField int contains the size of the current field, that is the value
returned by the SizeMethod for the field

iStream int holds the index of the current data stream

Table 6.10 - ProcessingMethod Inputs(continued)

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 87

6.14.2.10 Retrieval Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bCurrentFieldHasData bool true if the value of the current field is contained in the
i64CurrentField and false otherwise

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

i64CurrentField __int64 holds the value retrieved for the current field if that value
is 64 bits or less in size

i64FieldValue __int64 holds the value that is propagated through a series of
Retrieval Methods

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

iFieldSize int holds the size of i64FieldValue as it is propagated through
a series of Retrieval Methods

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytTruncated int holds the number of bytes truncated in the current layer

Table 6.11 - Retrieval Method Inputs

TELEDYNE LECROY Chapter 6Methods

88 DecoderScript ReferenceManual and User Guide

Input Construct Comment

iofsbitCurrentField int holds the bit offset of the start of the current field

iofsbitFieldStart() #define provides the bit offset of each decoded field

isizbitCurrentField int contains the size of the current field, that is the value
returned by the SizeMethod for the field

iStream int holds the index of the current data stream

Table 6.11 - Retrieval Method Inputs(continued)

6.14.2.11 Size Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from
the current position

Table 6.12 - SizeMethod Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 89

Input Construct Comment

inbytLeftInFullLayer int holds the number of bytes in the current layer from the
current position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.12 - SizeMethod Inputs(continued)

6.14.2.12 StartBit Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

Table 6.13 - StartBit Method Inputs

TELEDYNE LECROY Chapter 6Methods

90 DecoderScript ReferenceManual and User Guide

Input Construct Comment

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytLeftInAvailableLayer int holds the number of bytes stored for the current layer from
the current position

inbytLeftInFullLayer int holds the number of bytes in the current layer from the
current position

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentPosition int holds the bit offset of the start of the current field.

iofsbitFieldStart() #define provides the bit offset of each decoded field

iofsbytCurrentPosition int holds the offset of the byte corresponding to
iofsbitCurrentPosition

iStream int holds the index of the current data stream

Table 6.13 - StartBit Method Inputs(continued)

6.14.2.13 Verify Method Inputs

Input Construct Comment

abFieldHasData(field) #define amacro that indicates whether or not the data for the
given field is present in the ai64Field array.

abytLayer UCHAR* byte array that holds the undecoded data for the current
layer.

aisizbitField Aint& an array that holds the size of each decoded field in the
current layer

ai64Field Aint64& an array of field values for the current layer

bCurrentFieldHasData bool holds true if the value of the current field is contained in
the i64CurrentField and false otherwise

bHostDataOrder bool true if the bytes of the current field are designated as
being in host data-order and false if they are in network
data-orde

bNot bool true if and only if there is a "NOT" in the verify clause

i64CurrentField __int64 holds the value retrieved for the current field if that value
is 64 bits or less in size

iDrf int contains meta-information about the frame that was not
transmitted but collected by Frontline hardware and
firmware. Themeaning of these bits varies by ComProbe
device and is subject to change.

Table 6.14 - Verify Method Inputs

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 91

Input Construct Comment

evnFrameNumber __int64 holds the frame number of the frame currently being
decoded

ifrmofsbitLayerEnd int contains the offset within the frame of the last bit of the
current layer

ifrmofsbitLayerStart int holds the bit offset of the current layer within the frame

ifrmofsbytLayerStart int holds the byte offset of the current layer within the frame

inbytAvailableLayer int contains the number of data bytes that have been stored
for the current layer

inbytFullLayer int holds the original full length, in bytes, of the current
protocol layer

inbytTruncated int holds the number of bytes truncated in the current layer

iofsbitCurrentField int holds the bit offset of the start of the current field

iofsbitFieldStart() #define provides the bit offset of each decoded field

isizbitCurrentField int contains the size of the current field, that is the value
returned by the SizeMethod for the field

iStream int holds the index of the current data stream

Table 6.14 - Verify Method Inputs(continued)

6.14.3 Redundancies in Input Values
You may notice that certain values appear to be redundant. For example, ifrmofsbitLayerStart is redundant
because it is always equal to (ifrmofsbytLayerStart * 8). In all such cases this redundancy is provided very
deliberately. This serves efficiency so that, for example, you can use ifrmofsbitLayerStart in preference to either
setting your own variable to (ifrmofsbytLayerStart * 8) or repeatedly using the expression (ifrmofsbytLayerStart *
8).

Here is one other example of redundancy:

ifrmofsbitLayerEnd = ifrmofsbitLayerStart + (inbytLeftInFullLayer*8) ‐ 1

6.14.4 Truncated Frame
In most cases, complete frames are available for decoding. However, the protocol analyzer will work with frames
that have been truncated. This feature can be very handy when frames tend to be long and only the protocol
information at the start of each is of interest but not the "data" that follow. Such truncation often occurs when
frames are imported from some other source.

As a reminder, the values that pertain to truncated frames are:

inbytLeftInAvailableLayer
inbytLeftInFullLayer
inbytTruncated

TELEDYNE LECROY Chapter 6Methods

92 DecoderScript ReferenceManual and User Guide

Whenever you write a method that directly accesses the abytLayer array, we urge you to consistently use the
relevant values (especially inbytLeftInAvailableLayer) to verify that what you want to access is really there before
grabbing it!

6.14.5 The Current Field
Methods of many types have access to what we call "the current field". By this we mean the field being decoded.
This has obvious meaning only to those methods invoked directly from FIELD and GROUP FIELD statements. (These
methods are Format, Size, StartBit, RetrievingData, and Verify Methods.)

6.15 Other Resources
This section describes various functions that are built in to the protocol analyzer and available to method writers.
These functions are available to methods of all types.

When calling one of these functions in a method, you must preface it by "MTH::" as in this example:

int i = MTH::TableGetDetail(tblParam1, i64CurrentField, bIsDefault);

6.15.1 Miscellaneous Functions
Here are a couple of general utility functions. Methods may of course also call C runtime-library functions and
Windows API functions.

Function Name Purpose
GetNextByteBoundary Adjusts an offset to the next byte boundary

GetLongField Extracts data with optional byte reordering

GetRawFrame Extracts the raw data for an entire frame and returns true if successful

Table 6.15 - General Utility Functions

int GetNextByteBoundary(int ibitOffset) takes a number representing a bit offset and returns a byte offset. If the
bit offset points to a byte boundary then the byte offset of that byte is returned. Otherwise the byte offset of the
next byte is returned. Use of this function is exemplified by the StartBit Method called NextByteBoundary.

START_BIT
METHOD __NextByteBoundary__

/* Moves the pointer to the beginning of the next byte.

If the pointer is already at a byte boundary, it doesn't move. */
CODE

iOutput = MTH::GetNextByteBoundary(iofsbitCurrentPosition) * 8;

ENDCODE

void GetLongField(Abyte& abResults, const BYTE* pabFrame, int iCurrentBit, int iSize, bool
bHostDataOrder)extracts iSize bits starting at bit offset iCurrentBit from the byte array pabFrame and stores them
into abResults. If bHostDataOrder is true then the byte ordering is reversed. This function is most commonly used
to extract data from abytLayer.

bool GetRawFrame(pCaptBuff, evn, abData) extracts the raw data from an entire frame and returns true if
successful.

__int64 evn; // This is the frame number. It must come from the
// evnFrameNumber parameter. If you want

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 93

// to retrieve a different frame, you must save that
// frame's evnFrameNumber in inter-frame data to
// retrieve it now.

Abyte abData; // The array to receive the data.

if (MTH::fxnGetRawFrame(pCaptBuff, evn, abData)) // get the frame
{

for (int i = 0; i < abData.GetSize(); i++)

{

// abData[i] is one byte of the returned frame.

}

}
else
{

// error case - we didn't get the frame.

}

6.16 Defining A Method
Finally we can now get to the heart of the matter and tell you how to create a method. Let us start with another
example:

BOOLEAN
METHOD __FieldIsBetween__
/* Checks a field value to see if it falls between two other values. */
CODE

bOk = ((ai64Field[fldParam3] >= i64Param1)

&& (ai64Field[fldParam3] <= i64Param2));

ENDCODE
PARAM "Low value" int64
PARAM "High value" int64
PARAM "Which field" field

The method starts with a keyword that states its type, BOOLEAN in this case. Then comes the keyword METHOD
followed by the method's name and a comment describing what the method does. The actual C++ code of the
method is delimited by the keywords CODE and ENDCODE. Finally comes the list of parameters. Each parameter
is defined by a statement of the form:

PARAM "<description>" <type> [= <default value>]

<description> text that describes the parameter.

<type> is one of the parameter types listed in the table in the following section. [=<default value>] allows you to
make the parameter optional by specifying the default value to use if the decoder writer doesn't include one. A
good example of this is the Size method Fixed, which allows the Units parameter to be optional by specifying a
default of "Bytes".

A method may have up to 15 parameters. Only input parameters are allowed.

TELEDYNE LECROY Chapter 6Methods

94 DecoderScript ReferenceManual and User Guide

6.16.1 ParameterTypes
Methods can be created with parameters of your choice. The types of parameter available are:

Declared
as Description Parameter

Name
field Name of a field fldParam#

float IEEE-standard double-precision (64-bit) floating-point number (double in
C++)

dParam#

int 32-bit signed integer iParam#

int64 64-bit signed integer i64Param#

list One of a given enumeration eParam#

str ASCII string csParam#

table Name of a DecoderScript table tblParam#

Table 6.16 - Method Paramete Types

The '#' in the parameter name is replaced by its ordinal (1, 2, 3,… 15) as you can see in the FieldIsBetween
example above.

When a method has a field parameter, the caller inserts the name of a field as the actual parameter. The value
that arrives in the fldParam# parameter is however the index of that field in the ai64Field array. "-1" is also
allowed as an actual field parameter; it means "no field" and the method may treat that as it will. The idea is that it
allows a field parameter to be optional.

For an example of how a list parameter is defined and used, see the example in the section on Boolean Methods.

6.17 Output Values
The purpose of most methods is to produce some output, for example a string for display in the case of a Format
Method. In every such case, the output is stored into designated variables. Methods do not return values and may
not transmit results through parameters.

Output variables are described in detail in the following sections covering each method type. Here is a summary:

Method Type Output Variable Significance
Boolean bool bOk true or false

Branch int iOutput reference to branch field in a table entry

Table 6.17 - Output Variable for EachMethod Type

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 95

Method Type Output Variable Significance
ByteStreamFramer bool bFrameTransformed;

CArray<WORD,WORD>
ausLowIndex;

CArray<WORD,WORD>
ausHighIndex;

CArray<BYTE,BYTE> abVirtualFrame

ebsfReturn eAction

info so that the layer can be parsed.

Format CString csOutput formatted string for display

Frame Transformer bool bFrameTransformed;

CArray<WORD,WORD>
ausLowIndex;

CArray<WORD,WORD>
ausHighIndex;

CArray<BYTE,BYTE> abVirtualFrame

(see Frame Transformers on page 117)

NextProtocol __int64 i64Output numeric code for protocol

NextProtocolOffset int iOutput offset in bytes

NextProtocolSize int iOutput size in bytes

PreProcessing (none)

Processing (none)

PostProcessing (none)

Retrieval __int64 i64FieldValue adjusted value

int iFieldSize size in bits

Size int iOutput bit count

StartBit int iOutput bit offset

Tag CString csOutput tag name

Verify bool bOk true or false

CString csOutput expected result if verification fails

Table 6.17 - Output Variable for EachMethod Type(continued)

6.18 Method Contexts and Examples
We now describe the input parameters, output variables and other context resources for each method type in
turn. In many cases we quote examples that correspond to standard methods but the code we publish here is not
necessarily identical to the code the real method is built from.

TELEDYNE LECROY Chapter 6Methods

96 DecoderScript ReferenceManual and User Guide

6.18.1 Boolean Methods
Boolean Methods set the variable bOk to either true or false (as normally defined in C++). We have already given
one example, FieldIsBetween above. Here is another that also serves as an example of how list parameters are
used:

BOOLEAN
METHOD __FieldIs__
/* Makes a specified comparison on a given field value */
CODE

switch (eParam1)
{
case eGreaterThan:

bOk = ai64Field[fldParam3] > i64Param2;
break;

case eGreaterThanOrEqualTo:

bOk = ai64Field[fldParam3] >= i64Param2;
break;

case eLessThan:

bOk = ai64Field[fldParam3] < i64Param2;
break;

case eLessThanOrEqualTo:

bOk = ai64Field[fldParam3] <= i64Param2;
break;

case eEqualTo:

bOk = ai64Field[fldParam3] == i64Param2;
break;

case eNotEqualTo:

bOk = ai64Field[fldParam3] != i64Param2;
break;

default:

bOk = FALSE;

}

ENDCODE
PARAM "Operator" list {GreaterThan GreaterThanOrEqualTo LessThan LessThanOrEqualTo EqualTo

NotEqualTo}
PARAM "Match value" int64
PARAM "Field to test" field

Note that when one of the enumerated values for a list parameter is used within the method code, it is prefixed
by an 'e'.

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 97

6.18.2 Branch Methods
A Branch Method stores a reference to a FIELD or GROUP into the iOutput variable. This can be seen in the
FromTable method:

BRANCH

METHOD __FromTable__

/* gets the field from the table */

CODE

bool bIsDefault;

iOutput = MTH::TableGetBranchField(tblParam1,

ai64Field[fldParam2], bIsDefault);

ENDCODE

PARAM "Which table" table PARAM "Which field" field

6.18.3 Byte Stream Framer Methods
This mtheod allows you to process the layer as more than one frame. See the discussion for PAYLOAD_IS_BYTE_
STREAM for more information. This method is only called if the layer directly above it in the stack has the
PAYLOAD_IS_BYTE_STREAM keyword.

This method has some things in common with a frame recognizer in that its job is to split a byte stream into
sections. However, it has some important differences, too. First, it is called on just the payload portion of the
frame, and the payloads can be split up across many frames, so the data it works on is not contiguous. Second, this
method has access to all the data in the payload at once, unlike the recognizer, which only has access to one byte
at a time.

Payloads could be split in a few different ways. Your particular payload may not exhibit all these possibilities. The
easiest possibility is that the payload is exactly one layer. (That is also the normal case, where we aren't doing byte
stream framing). Another possibility is that the payload could contain two or more layers, but the last byte of the
payload is always the end of a layer.

The third case is that the payload is completely independent of physical layers that it resides; that is, a payload can
contain 1½ frames, or ½ of a frame, or a layer can extend over many frames. In this third case, you will need to
keep the information from previous frames as inter-frame data.

This method returns a value in the variable eAction. The legal values are:

ebsfTotallyContained: The layer is completely contained in this payload.

ebsfReconstructed: This method has reconstructed the layer in a manner similar to Frame Transformation
methods.

ebsfPartial: This payload is just part of a layer. Wait until the next payload comes in to decode it.

If the return value is ebsfReconstructed, then the three variables ausLowIndex, ausHighIndex, and abVirtualFrame
must be set.

If the return value is ebsfTotallyContained, then the variable iBytesUsed is set to the number of bytes consumed
by this layer.

TELEDYNE LECROY Chapter 6Methods

98 DecoderScript ReferenceManual and User Guide

6.18.4 Format Methods
FormatMethods put whatever output they produce into the csOutput object. The simplest example is:

FORMAT
METHOD __Constant__
/* just outputs the string passed into it */
CODE
csOutput = csParam1;
ENDCODE
PARAM "String to print" Str

Because custom FormatMethods are the most popular, we will give another example. This example formats a
string of bytes as unsigned decimal integers. It is equivalent in function to the standard method called
StringOfDecimal, but is coded differently.

FORMAT
METHOD __MyStringOfDecimal__
/* formats a string of decimal bytes */
CODE
int iSize = isizbitCurrentField / 8;
int iStart = iofsbitCurrentField / 8;
int iPrintSize = min(iParam1, iSize);
char* pOutput = csOutput.GetBuffer(iPrintSize*4+5);
pOutput[0] = '\0';
for (int i = 0; i < iPrintSize; i++)
sprintf(&pOutput[i*4], "%-3u ", abytLayer[iStart+i]);
csOutput.ReleaseBuffer();
if (iPrintSize != iSize)
csOutput += "...";
ENDCODE
PARAM "Length of display string" int

Since this method must be capable of handling a field that is longer than 8 bytes (64 bits) we cannot use
i64CurrentField. Instead we access the field data through the byte array called abytLayer which holds the
undecoded data for the protocol layer. The value in iofsbytCurrentPosition gives us the index into this array of the
first byte of the current field. We simply loop through the bytes formatting each one with spaces in between. A lot
of the code simply deals with making sure the string ends up being of appropriate length and adding an ellipsis if
there is any truncation. The one parameter is the maximum length of the formatted string in characters.

Note that if a method that works directly with abytLayer is called for a field that happens to be 64 bits or less in
size then the effect of any Retrieval Methods applied to the field value will not be reflected in the value that is
formatted.

6.18.5 NextProtocol Methods
A NextProtocol Method produces a number and stores it into the variable i64Output. Here is the simplest
example where the code is extracted from a named field:

NEXT_PROTOCOL
METHOD __FromField__
/* obtains the value in a named field */
CODE
i64Output = ai64Field[fldParam1];
ENDCODE
PARAM "Field that contains the next protocol" field

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 99

6.18.6 NextProtocolOffset and NextProtocolSize Methods
A method of either of these types obtains or calculates the offset/size of the next protocol layer and stores it into
the variable called iOutput as in this example:

NEXT_PROTOCOL_SIZE
METHOD __FromField__
/* obtains the size from a given field */
CODE
iOutput = (int)ai64Field[fldParam1] + iParam2;
ENDCODE
PARAM "Field that contains the next protocol size" field

6.18.7 PREPROCESSING, PROCESSING, and POSTPROCESSINGMethods
These methods follow the usual pattern opening with the keywords PREPROCESSING, PROCESSING and
POSTPROCESSING. They create no output and the only external effects they can manifest are via Decoder Data
Objects and by throwing exceptions. PreProcessing methods can also initialize values in ai64Field. You can have
multiple PRE-, POST- and PROCESSING directives in a Decoder. Pre- and PostProcessing methods are used in the
header, while Processing methods are used in individual FIELDs.

6.18.8 Retrieval Methods
A Retrieval Method normally modifies the value supplied to it in i64FieldValue and may also adjust this value in
bits as supplied in iFieldSize. When a sequence of Retrieval Methods is invoked, these values are initialized to the
value and size of the current field. The end result of such a sequence is either to change the value and/or size of
the current field or to set the value and size of a variable. The actual setting of the value and size of the field
(i64CurrentField and isizbitCurrentField) or variable is done behind the scenes.

It is quite acceptable and sometimes useful for a Retrieval Method to operate without changing either
i64FieldValue or iFieldSize. The typical case would be where the method stores the field value and/or size into a
Decoder Data Object. This use of a Retrieval Method is discussed later on.

Here is a simple example:

RETRIEVING_DATA
METHOD __AndMask__
/* AND the current field with the parameter */
CODE
i64FieldValue = i64FieldValue & i64Param1;
ENDCODE
PARAM "Mask to apply to data" int64

6.18.9 Size Methods
Size Methods set the iOutput variable to the number of bits determined to be the size of the field. Here is an
example in a method that sizes a null-terminated string of 8-bit characters:

SIZE
METHOD __String__

TELEDYNE LECROY Chapter 6Methods

100 DecoderScript ReferenceManual and User Guide

/* size is from current byte to the first null */
CODE
{
int iEndPtr = iofsbytCurrentPosition;
while ((iEndPtr < inbytAvailableLayer-1) &&
(abytLayer[iEndPtr] != 0))
iEndPtr++;
iOutput = (iEndPtr-iofsbytCurrentPosition+1)*8;
}
ENDCODE

Many Size Methods take a parameter that identifies a unit of measure (bit, byte, etc.). The Fixed method serves as
a good example of this:

SIZE
METHOD __Fixed__
/* returns the number of bits specified */
CODE
iOutput = iParam1 * __SizeOfUnitsInBits__(eParam2);
ENDCODE
PARAM "Number (in units)" int
PARAM "Units" list {Bit Bits Nibble Nibbles Byte Bytes Octet Octets Word Words Dword Dwords Qword

Qwords} = Bytes

Note the defaulting of the second parameter to "Bytes".

6.18.10 StartBit Methods
A StartBit method sets the iOutput variable to the bit distance from the start of the layer. And Move is our
example here:

START_BIT
METHOD __Move__
/* moves the pointer the requested number of bits, negative
* numbers move back */
CODE
iOutput = iofsbitCurrentPosition + iParam1 * __SizeOfUnitsInBits__(eParam2);
ENDCODE
PARAM "Amount to move" int
PARAM "Units" list {Bit Bits Nibble Nibbles Byte Bytes Octet Octets Word Words Dword Dwords Qword

Qwords} = Bytes

6.18.11 Tag Methods
These take no input parameters, and output a string. This string is the name of the tag that will be used for this
field. Commonly, it is sufficient to use the standard method, Tag, which just returns whatever string is passed to it.
You may enforce tag naming standards by writing a tag method that formats a string in a certain way. This method
type is not called for each frame, but on demand, so it must return the same value no matter when it is called.
Therefore, it doesn't make sense to use inter-frame data, and it has no access to the current frame. The output
string must come completely from the parameters passed to it.

Here is the code for the standard method:

TAG
METHOD Tag /* This returns the constant string passed to it */

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 101

CODE
csOutput = csParam1;
ENDCODE
PARAM "Constant" Str

6.18.12 Verify Methods
Verify Methods set the Boolean variable bOk to true or false and, in the case of false, the object csOutput to a
string indicating what the value was expected to be. Here is code for the IsInTable method which checks that
there is an explicit entry in a given table for the current field value.

VERIFY
METHOD __IsInTable__
/* returns OK if the current field value matches an entry other than the default */
CODE
/* First try to get anything out of the table. It doesn't matter
which function we ask for because we only care about the
bIsDefault value, which is the same for all four of the calls.*/
bool bIsDefault;
MTH::TableGetDetail(tblParam1, i64CurrentField, bIsDefault);
/* If bIsDefault is false that means it is IN the table, so
reverse the sense.*/
bOk = !bIsDefault;
/* The user can reverse the test by adding "NOT" in the
decoder.*/
if (bNot)
bOk = !bOk;
/*If we failed the test, we will add some text explaining what
the error is.*/
if (!bOk)
csOutput = "Entry Is Not In Table";
ENDCODE
PARAM "Table" table

Note the reference to bNot. Any Verify Method that checks a field (that is, one other than a checksum/CRC
checker) must apply bNot as appropriate. In the case of IsInTable, when a failure occurs, the Method returns
"Entry Is Not In Table".

6.19 Programming Exceptions
If you need to throw an exception (in the C++ sense) in your method, you may use either of two facilities intended
for the purpose:

throw CFdFrameException("<error message>");
throw CFdFieldException("<error message>");

As the names imply, the first form aborts decoding of the entire current frame while the second merely aborts
decoding of the current field. The parameter to the exception is a string explaining the cause of the exception that
will be displayed in the Decode Pane.

Here is an example:

RETRIEVING_DATA
METHOD __DivideInteger__
/* Divides the current field value by an integer constant */
CODE
if (i64Param1 == 0)

TELEDYNE LECROY Chapter 6Methods

102 DecoderScript ReferenceManual and User Guide

{
throw CFdFieldException("Divide by zero error. Integer parameter is zero.");
i64FieldValue = -1;
}
else i64FieldValue = i64CurrentField / i64Param1;
ENDCODE
PARAM "Constant value to divide by" int64

6.20 Common
In your .MTH file you may include a common section. This usually goes at the top and contains anything you need
to have there that is other than methods. The common section is the place to put general #includes - that is for .h,
.cpp or any other appropriate type of file other than an .MH which should be included outside the common
section. A common section could also contain class, type and structure definitions, #defines, and so on. It is
delimited by the keywords COMMON and ENDCOMMON as in this example taken from FTESTD.MTH.

COMMON
static int __SizeOfUnitsInBits__(int iUnits)
{

Significance
static int aiSize[] = { 1, 1, 1, 4, 4, 8, 8, 8, 8, 16, 16, 32, 32, 64, 64 };
if ((iUnits < 0) || (iUnits >= sizeof(aiSize)/sizeof(aiSize[0])))
return 0;
return aiSize[iUnits];

}
ENDCOMMON

Be careful with the common section. It is easy to misuse it and put code and variables in it that could better be put
somewhere else. Think of it as equivalent to global data, and avoid using it more than necessary. In particular,
although it is legal to do so, never declare variables in this section. Because methods get executed in unexpected
ways, you can never be sure of a variable state you have declared. (See Chapter 9: Decoder Data Objects on page
116). If you are tempted to declare a variable here, you probably need to use the inter-frame data construct
explained in Chapter 5.2. You can declare constants in this section without harm.

6.20.1 Loading External Data Into Common
Loading external data into common can be done with the code below. This code will be executed exactly once
when the method dll is first loaded. The data will remain resident and unchanged until you exit the program. It
differs from a Decoder Static in that it won’t be re-initialized every time you start capturing or load a new capture
file.

COMMON
//Some Data Declaration
extern "C" __declspec(dllexport) void InitMthDll(HINSTANCE hInstance, DWORD dwReason)
{

if(dwReason == DLL_PROCESS_ATTACH)
{

TCHAR szDllPath[MAX_PATH];
int iNumOfBackSlashes = 0;
int iLength = GetModuleFileName(hInstance, szDllPath, MAX_PATH);
if(iLength != 0)
{

// read some external data source and save it to COMMON data.

Chapter 6Methods TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 103

}
}

}
ENDCOMMON

6.21 Where Do Custom Methods Reside?
The standard methods provided with the protocol analyzer reside in DLLs in the directory "<installation path>\App
Data\Methods". Sources are generally not included. Methods written by customers should be placed in a different
directory.

When the protocol analyzer is installed it creates a number of subdirectories that begin with "My". One of these is
"My Methods", and that is where custom methods belong. Your source module should be placed in a subdirectory
of "My Methods" called "Source" with an extension of "MTH". Thus, if you create a set of methods for a protocol
called Proto, then you might save it as file "<installation path>\My Methods\Source\Proto.MTH". You can put as
many methods into one file as you wish. If you prefer, you may also put methods that are to be compiled together
into separate files and then include these in your .MTH file. Our convention is to name such with an extension of
.MH, but you are free to use any name. Such inclusions are specified as follows:

include "MyMh.mh"

When your methods are compiled and linked, they get built into a DLL that is deposited in the "<installation
path>\My Methods" subdirectory.

6.22 How Does a Custom Method Get Compiled?
You must have a suitable version of Microsoft Visual C++ 2008 (known also as Visual C++ 9.0) installed on your
system but you do not invoke the build yourself. Instead, run the protocol analyzer in Capture File Viewer and
select "Recompile Methods" from the Methods menu (or click the icon that resembles a pile of bricks). In fact just
starting the program may be enough; it checks to see if you have any methods that need to be recompiled and, if
it finds any, asks you if it should proceed with that.

TELEDYNE LECROY Chapter 6Methods

104 DecoderScript ReferenceManual and User Guide

Chapter 7 Frame Recognizers
Before protocol data can be decoded, it must be split up into frames and then layers. A decoder, remember, is
designed to process one frame at a time. If we look at one side of a communication session, we see a succession
of frames like this:

Frame Frame Frame Frame Frame

The question we examine in this chapter is: how are the boundaries between frames determined?

In some cases, such as with Ethernet, the hardware sends complete frames. In other cases, such as with bit-
synchronous protocols (HDLC, SDLC, etc.) the hardware detects the beginnings and end of frames and hands
notifications of these events to the protocol analyzer interspersed with byte-at-a-time data. Then there are cases
where the data are received as an unstructured byte stream; this is typical of asynchronous protocols such as SLIP
and PPP. In this last situation, the protocol analyzer must depend on software to figure out where frames begin
and end. Such a piece of software is called a Frame Recognizer. If your protocol needs a Frame Recognizer you
might be lucky enough to be able to use one of the standard recognizers supplied with the protocol analyzer, but
most likely you will need to develop a custom one.

No matter how frames are recognized, start-of-frame and end-of-frame events will be inserted into the captured
data to mark the boundaries. When a Frame Recognizer is used, data is normally fed through it right after being
captured so that it can be decoded and displayed in real time. It is also possible to reframe such captured data at a
later stage by selecting "Reframe…" from the File menu of the Frame Display. This process removes existing start-
and end-of-frame events and feeds the data through the Frame Recognizer again. This is very handy when you are
debugging a Frame Recognizer and also serves when you capture data without knowing or specifying what
protocol is in use.

In a nutshell, a Frame Recognizer is called for each event in sequence. Its job is to spot where frames begin and
end, and for each byte, to return an indicator of frame state.

7.1 Recognizer Syntax
Frame Recognizers are similar to methods. They may even be referred to as compound methods. A Frame
Recognizer takes the following form:

RECOGNIZER name [PER_STREAM]
<stuff that appears in the class definition such as private variables>
@RESET

DecoderScript ReferenceManual and User Guide 105

<code - Called when there is a reset, when first starting, and when the lowest layer in the protocol stack
changes>

@CTOR
<code - Constructor>
//
// Note that the @RESET code will be called right after the
// constructor. Therefore the constructor need not and
// should not do any work that is better done is @RESET.
//
@DTOR
<code - Destructor>
@EVENT_HANDLER
<code - Called for the NOTIFY type events (defined below)>
@SIGNAL_CHANGE
<code - Called when a signal-change event happens>
@TIMER
<code - Called when a timer event occurs>
//
// Periodic calls are made to this code with the current time
// as a parameter. This gives the Frame Recognizer a chance
// to time-out.
//
@IMPLEMENTATION
<code - Anything else that needs to be defined, such as private functions.>
//
// Use "<recognizer_name>::<member_name>" when referring to
// members within this block.
//
@EACH_BYTE
<code - Called for each byte received>
@END_RECOGNIZER
[PARAM "comment" type]...

All of the code blocks are optional. If a block is omitted then its tag (e.g. @TIMER) should be omitted as well.

If PER_STREAM is present, then an instance of the recognizer is created for each stream. The instance for one
stream cannot "see" another stream's instance.

Parameters are declared as for regular methods and are visible to all code blocks.

7.1.1 Input Values
The input values available to recognizers:

const int iByte contains a character read from a communication stream.

const int iDrf contains error indications.

const int iNdrf contains signal-change indications.

const ePdaNotifyEventReasons nerReason holds the code for a notification. It is defined as an enum of the
following symbols:

nerCbStarted => nerCbStarted
Table 7.1 - nerReason enum

TELEDYNE LECROY Chapter 7 Frame Recognizers

106 DecoderScript ReferenceManual and User Guide

nerCbReset => Capture Buffer Reset

nerIoConfigChanged => I/O Configuration Changed

nerInitialize => Initialization

Table 7.1 - nerReason enum(continued)

const int iStream holds the index of the current data stream just as for methods.

const __int64 i64Timestamp holds a time value. The format of this value exactly matches the FILETIME type
defined by Windows. Timestamps are intended for the convenience of certain Frame Recognizers that must
use a time-out to determine when a frame has ended

Here is a list of the input values available to each block:

Input Value Block
RESET iStream

CTOR iStream

DTOR

EVENT_HANDLER iStream, nerReason

SIGNAL_CHANGE iStream, iNdrf, i64Timestamp

TIMER iStream, i64Timestamp

IMPLEMENTATION

EACH_BYTE iStream, iByte, iDrf, iNdrf, i64Timestamp

Table 7.2 - Input Values

7.1.2 Return Values
The SIGNAL_CHANGE, TIMER and EACH_BYTE code blocks must return one of the following values. Other blocks
do not return anything. In the following descriptions, SOF means Start-Of-Frame and EOF means End-Of-Frame.

eBrokenFrame Frame is broken (usually means the end of the frame didn't appear when we
expected it to). A broken framemarker is inserted into the capture following
the current event.

eContinue No change. (No SOF or EOF is inserted into the capture for the current
event.)

eInsertEofAfter Insert EOF after this event.

eInsertOtherSideEofBefore Insert EOF into other stream before this event.

eInsertSofBefore Insert SOF before this event.

eInsertSofAfter Insert SOF after this event.

eInsertThisSideEofBefore Insert EOF before this event.

eNewFrameEndOtherSide Insert EOF for the other side and SOF for the current side.

Table 7.3 - Return Values

Chapter 7 Frame Recognizers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 107

eNewFrameEndThisSide Insert EOF and SOF for this side before this event.

eSingleByteFrame Insert SOF for this side before this event and EOF for this side after this
event. Used for frames that consist of a single byte.

Table 7.3 - Return Values(continued)

These values are defined as an enumeration called eRecognizerResult. Thus, should you want to declare a local
variable to hold the result your code is going to return, you would do so with a statement such as:

eRecognizerResult eResult = eContinue;

Some of the most common return types have been enumerated for you. If you need to return something not in
the list above, see Appendix 4 for information on how to create a custom return value.

You might wonder about the significance of the "before" in eInsertOtherSideEofBefore. If the EOF is being
inserted for the other stream why would it matter if it comes before or after the current event? The answer is
that, in situations where this code is used, frames alternate (which is why an event on one side can imply an EOF
on the other) and putting the EOF before the current event serves to group it with the frame data from that other
side and make for a more appropriate ordering as seen in the Event Pane.

7.1.3 Parameters
You can define parameters for a Frame Recognizer just as for a method with the restriction that such parameters
may only be of type float, int, list and string. You cannot have a field or table type parameter since no such entities
exist in the recognizer context. This effectively means that any actual parameter to a Frame Recognizer has to be a
constant. You might, for example, have a recognizer that handles two or more versions of a protocol and pass the
actual version for any particular case as a parameter. Parameters may be referenced in any section of a
recognizer.

7.1.4 Error Processing
Frame Recognizers are called in the data collection thread. This means that there is no way to abort if a Frame
Recognizer runs into a serious error, because then data collection would stop. If a Frame Recognizer runs into a
problem so serious that it cannot continue its work, it must figure out something to do. In such a situation, it is
acceptable for it to put itself into a state where it always returns eContinue.

A Frame Recognizer may throw a CfdFrameException exception in its EVENT_HANDLER code. This is the only case
allowed; a Frame Recognizer should not generate an exception in any other circumstance.

7.2 Efficiency
The EACH_BYTE, TIMER and SIGNAL_CHANGE code of a Frame Recognizer should be written with great attention
to efficiency. Of all code that a user might write for use in decoders or methods, this is the most critical. Bear in
mind that it is called in real time as each data byte is captured from the communication line.

7.3 The Simplest Recognizer: Half Duplex
Here is a recognizer that is about as simple as can be. It serves for a half-duplex protocol on which frames
alternate from one end and then the other. In other words, as the embedded comment indicates, the recognizer
assumes that a frame ends and another begins when the direction of traffic changes. (This code is in the file
DecoderScript Method Samples.mth file located in My Methods\Source. There are additional examples of simple
frame recognizers in this file that demonstrate recognizers based on characters, control signals, simple timing and
parity errors.)

RECOGNIZER __HalfDuplex__

TELEDYNE LECROY Chapter 7 Frame Recognizers

108 DecoderScript ReferenceManual and User Guide

// The HalfDuplex frame recognizer. This method assumes frame is // everything in a stream until a byte
comes in from

// another stream.
int m_iCurrentStream;

@RESET
m_iCurrentStream = -1;

@EACH_BYTE
// If the last byte we looked at was in the same stream
// as this one.
if (m_iCurrentStream == iStream)
{

// Remain in the same stream
return eContinue;

}
else
{

//Switching streams
m_iCurrentStream = iStream;
// Start a new frame and end the previous
return eNewFrameEndOtherSide;

}
@END_RECOGNIZER

This recognizer has no parameters, and pays no attention to signal changes or even byte values; everything is
keyed off iStream. Note that iStream will contain either 0 or 1 so it works to initialize m_iCurrentStream to -1.

7.4 A Frame Recognizer for FP
When we introduced our Fictitious Protocol in Chapter 2 we carefully said nothing about how protocol units were
framed. Indeed, we did not even suggest what type of communication link FP would be used on. Let us now
suppose that FP is used over an RS-232 type of connection and framed like this:

Start Flag Frame Stop
Flag

using the following values:

Start Flag F1 hex (or 11110001 binary)

Stop Flag F2 hex (or 11110010 binary)

Let us look at the Frame Recognizer for FP:

RECOGNIZER __FP__ PER_STREAM
//
// Fictitious Protocol data
//
enum {START_FLAG = 0xF1, /* frames start with F1 hex */
STOP_FLAG = 0xF2}; /* frames end with F2 hex */
//
// Processing states
//

Chapter 7 Frame Recognizers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 109

#define STATE_NOT_IN_FRAME 1
#define STATE_IN_FRAME 2

private:
int iState;

@RESET
iState = STATE_NOT_IN_FRAME;

@EACH_BYTE
//
// Process the data byte based on the state
//
switch (iState)

{
//
// If we are not within a frame then we look
// only for a frame-start flag.
//

case STATE_NOT_IN_FRAME:

if (iByte == START_FLAG)
{

iState = STATE_IN_FRAME;
return eInsertSofAfter;

}
break;

//
// If we are within a frame then need to look
// only for a frame-end flag.
//

case STATE_IN_FRAME:

if (iByte == STOP_FLAG)
{

iState = STATE_NOT_IN_FRAME;
return eInsertThisSideEofBefore;

}
else if (iByte == START_FLAG)
{

iState = STATE_NOT_IN_FRAME;
return eBrokenFrame;

}

}
return eContinue;

@END_RECOGNIZER

Almost any Frame Recognizer will need to maintain some member variables, at least to record its state between
invocations and perhaps to save other information as well. FP's recognizer uses a private variable iState to hold its
state. This state is simply "in frame" or "out of frame".

Let us look at the method piece by piece starting with its framing:

RECOGNIZER FP PER_STREAM

TELEDYNE LECROY Chapter 7 Frame Recognizers

110 DecoderScript ReferenceManual and User Guide

…
@END_RECOGNIZER

As we observed above, a recognizer is not a method and it does not start and end like a method. You may
however include a recognizer in a source file along with methods.

Now let us get into the nitty gritty of recognizing FP frames. First, note that the RESET code initializes the value of
our state variable:

@RESET
iState = STATE_NOT_IN_FRAME;

Then we find the main work of the recognizer done in the EACH_BYTE block:

case STATE_NOT_IN_FRAME:

if (iByte == START_FLAG)
{
iState = STATE_IN_FRAME;
return eInsertSofAfter;
}
break;

On finding a start flag, we switch state to "in frame" and return eInsertSofAfter. This indicates that there is a start-
of-frame after the current byte. Note that we do not include the start flag within the frame since we do not want
the flag itself to appear in our decoder. In some other protocols, this may not be the appropriate procedure. If the
flag has meaning beyond that of simply marking the start of a frame then it should be included. Suppose for
example that an opening flag can be either F1 or F6 with one indicating a command and the other a response.
Then you would want to put the SOF in front of the flag.

The second case is when we are "in frame" and looking for a stop flag:

case STATE_IN_FRAME:

if (iByte == STOP_FLAG)

{

iState = STATE_NOT_IN_FRAME;

return eInsertThisSideEofBefore;

}

else if (iByte == START_FLAG)

{

iState = STATE_NOT_IN_FRAME;

return eBrokenFrame;

}

break;

When we find our stop flag we switch back to "out of frame" state and set the output to eInsertThisSideEofBefore
so that an end-of-frame marker will be inserted immediately before the current byte. Why is this value not called
eInsertEofBefore? Look back at the list of return codes and you will see there is also one called

Chapter 7 Frame Recognizers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 111

eInsertOtherSideEofBefore. Inserting an EOF before the current event is the one case where we need to be able
to do that for either stream.

To be careful we also check for another start flag since a start flag should never appear inside a frame. If one does,
it could be because a frame was incorrectly terminated, because a station died while transmitting a frame, or
because a byte was corrupted in transmission. In other words, there is no reliable conclusion we can draw about
what is up and we output eBrokenFrame.

7.5 Handling Signal-Change Events
The interpretation of signal changes depends totally on the type of communication line that the capture came
from. In the case of an RS-232 line, a signal change is inserted to mark each transition of a modem-control signal
(DTR, DSR, RTS, CTS, CD, etc.). For Ethernet there are no signal changes. Because they are not universal, no symbols
for identifying RS-232 signals are provided.

Parameter 1 is for side A and is an 8 digit hex number. The first 4 digits determine the Start of Frame signal and
value. The second 4 digits determine the End of Frame value. The top most bit of each 4 digit number is used to
specify the on or off state to watch for. The values for the control signals are as follows:

RTS 0x01

CTS 0x02

DSR 0x04

DTR 0x08

CD 0x10

RI 0x20

Therefore if you want RTS to control side A as on=SOF and off=EOF, parameter

1 should be set to 0x80010001. Following this logic, side B controlled by DSR would require parameter 2 to be set
to 0x80080008 yielding the following statement in your decoder:

RECOGNIZER (SignalChange 0x80010001 0x80040004) Note that one could combine the above signal values. For
example to watch for either RTS or CTS use the value of 3 as follows:

(SignalChange 0x80030003,...) Notice that the binary 0x01 and 0x02 have been OR'ed. (0001 OR 0010 = 0011 =
0x03.)

Because the encodings can change, the only way to be really sure what the encoding currently is for a signal
change event is to start the protocol analyzer, open the Set I/O Configuration window and click the Names button.
The signal changes will be listed in this window in order, where the top item is the low bit. For example, the signal
changes in the Names window are listed in the same order as the list above.

Here is an example:

@SIGNAL_CHANGE
if (iNdrf & 0x01) // Is the first signal on?
{

iState = STATE_NOT_IN_FRAME;
return eInsertThisSideEofBefore;

TELEDYNE LECROY Chapter 7 Frame Recognizers

112 DecoderScript ReferenceManual and User Guide

7.6 Handling Error (DRF, or Data Related Flag) Events
The interpretation of error events depends on the type of communication line that the capture came from in the
same way that signal change events do. Error events are encoded in a single byte. As of this printing, the
encodings are:

UART Overrun 0x01

Parity 0x02

Framing 0x04

CRC 0x08

Underrun 0x10

Table 7.4 - ComProbe Driver

UART Overrun 0x01

Parity 0x02

Framing 0x04

Table 7.5 - Asynchronous Serial Driver

UART Overrun 0x01

Parity 0x02

Framing 0x04

Data Lost 0x08

Table 7.6 - RS232 ComProbe II Driver

As with signal changes, the only way to be sure that the encoding hasn't changed is to start the protocol analyzer,
open the Set I/O Configuration window and click the Names button. The errors will be listed in this window in
order, where the top item is the low bit.

7.7 Handling Timer Events
The @TIMER block is called once per second. When a call comes to your @TIMER block, you typically want to
check the value in i64Timestamp. For example, you can save the timestamp value into a member variable each
time a character is received then, when the @TIMER call comes, compare that with the current i64Timestamp,
decide if it is appropriate to time out the frame and proceed appropriately. This is facilitated by the fact that
i64Timestamp is provided to the @SIGNAL_CHANGE and @EACH_BYTE blocks in addition to @TIMER. You can also
use the @TIMER block to check for an idle line by counting the number of ticks since the last byte was received.
For example, if the @TIMER block is called 5 times since the last byte was received, you can assume that the line
has been idle for 5 seconds.

Chapter 7 Frame Recognizers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 113

7.8 Loose Ends
The need has arisen to construct Frame Recognizers that depend on conditions such as the state of parity bits. This
is an unusual case but can easily be handled since the state of error flags, including parity for a serial connection, is
available to the EACH_BYTE code in iDrf.

Many protocols include means to allow data values that match flags to appear within frames. Typically, this is
achieved by the use of escape characters or byte stuffing. An escape character is a special code inserted before
any sensitive data byte to indicate that it is to be treated as data and not as a control character. Byte stuffing means
that sensitive codes in data are converted to a non-sensitive value (or values) and flagged by a special character.
The job of stripping escape characters and de-stuffing bytes falls to a Frame Transformer. Frame Recognizers not
only are not supposed to do such things but actually have no capability of removing or altering data.

7.9 Frame Recognizers Included with Protocol Analyzer
Frame Recognizers are not exactly methods, but they are necessary components for some decoders. The protocol
analyzer includes some standard frame recognizers that may serve your needs. To invoke a frame recognizer for a
protocol, put the following statement in the Reference section of your decoder (the section after the decoder ID
and before the DECODE keyword):

RECOGNIZER (Recognizer Name)

Following are some recognizers included with the protocol analyzer and how they determine the beginning and
end of frames.

Name Description
HalfDuplex Assumes a frame is everything in a stream or channel until a

byte comes in from another stream

ParityError When a parity error is detected, end the previous frame and begin
the next.

TimeGap Determines framing by comparing the timestamp of the current
byte to the previous byte. This recognizer takes a parameter
representing the gap between frames. The parameter is
expressed inmilliseconds. For example, (TimeGap 3)means a
gap of greater than 3milliseconds between bytes will end the
previous frame and begin the next.

SignalChange Framing is controlled by a control signal. This method takes two
parameters: an integer representing the control signal used for
side A, and an integer representing the control signal used for
side B. The FrameRecognizer only looks at the signal states for
data bytes, not at signal change events that happen independent
of receiving a data byte. Hence, a signal changemarking the end
of a frame, that occurs independent of a data byte, will bemissed
by the recognizer.

Table 7.7 - Recognizer Names

In the Signal Change recognizer, which signal to look for and whether to look for it going on or off is encoded in 16
bits. The highest bit determines whether to look for the signal going on or off. 1=on, 0=off. The bits for the signals
are:

TELEDYNE LECROY Chapter 7 Frame Recognizers

114 DecoderScript ReferenceManual and User Guide

RTS 0x01

CTS 0x02

DSR 0x04

DTR 0x08

CD 0x10

RI 0x20

You can set the recognizer to look for more than one signal, though all signals to watch for must go either on or
off. In other words, you can't look for RTS going high and CTS going low as the start of a frame.

For example, to start a frame when RTS goes on and end it when CTS and DSR go off, use the following:

RECOGNIZER (SignalChange 0x80010006 0x80010006

1000 (SOF when the following goes high)

0001 (RTS is the only signal to pay attention to)

0000 (EOF when the following goes low)

0110 (pay attention to CTS and DSR).

You have to give the number twice because the first number is for channel A and the second for channel B,
where the channels are often DTE and DCE in an asynchronous circuit..

Chapter 7 Frame Recognizers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 115

116 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 7 Frame Recognizers

Chapter 8 Frame Transformers
Sometimes data is not in a form that is convenient for a decoder to work with. It could be encrypted for example.
The protocol analyzer therefore allows you to provide a method that each frame is fed through to prepare it for
the decoder. Such a method is called a Frame Transformer.

Typical uses for Frame Transformers are:

l To remove escape characters or undo byte stuffing

l To decrypt encrypted data

l To decompress compressed data

l To clean up the data so that it is in suitable condition for CRC/checksum verification

In practice, a Frame Transformer can do any job you find necessary or useful. You could even write a Frame
Transformer to make one protocol (which you do not have a decoder for) look like another (which you do have a
decoder for).

Note that when decoding a protocol stack, a frame could be fed through multiple transformers; each layer may
have its own reasons for transforming the data. Most commonly, however, data-link layers use Frame
Transformers.

A Frame Transformer is a method that performs transformations on a frame before or after it is decoded. Most
commonly, Frame Transformers are used for such purposes as decrypting data that has been encrypted,
decompressing data that has been compressed, undoing byte stuffing, and generally reverting data from a form
that it was put in for transmission purposes. You may, however, use Frame Transformers for any purpose you see
fit. Here are a couple of examples of how Frame Transformers are used in creative ways:

l The decoder for Van Jacobson Uncompressed headers (vju.dec) changes one byte so that the frame then
looks like an IP frame.

l The decoder for Van Jacobson Compressed headers (vjc.dec) throws away the first several bytes and replaces
them with a 40-byte constructed TCP/IP header.

Captured data is normally framed (i.e. passed through a Frame Recognizer) exactly once. Frame transformation,
on the other hand, is done every time a frame is decoded. Indeed, it is quite possible for a frame to be
transformed several times as it is passed through various decoders.

DecoderScript ReferenceManual and User Guide 117

The term "Frame Transformer" may be a little misleading. When you write a Frame Transformer, the data that you
have to work with is strictly the data in your own protocol layer. A Frame Transformer cannot "see" any data
beyond the boundaries of that layer - indeed no method can. Nevertheless, while the view of it is restricted, the
entire frame is actually kept through the full decoding process. It is therefore appropriate to say that a
transformer does affect the frame as a whole.

8.1 A Frame Transformer for FP
To see what a simple Frame Transformer is like, let us look at one for our Fictitious Protocol. You might have
noticed a flaw in the FP design (as presented prior to this point). On the one hand, we implied that an FP frame
could not contain a byte with value 0xF1 because that matches a Start Flag. On the other hand, a frame may
contain a 16-bit actuator/selector value that could certainly include a byte matching 0xF1. Having an End Flag
(0xF2) in the body of a frame is a problem for the same reason. The solution we adopt for FP is to define a special
encoding for these bytes when they appear within a frame. We reserve a third byte code for this purpose, 0xF0,
then encode as follows:

The rule for decoding is that any time we come across an F0 byte, we discard it and OR the following byte with F0.
With that, here is the FP transformer:

FRAME_TRANSFORMER
METHOD __FP__ /* Remove byte-stuffings within FP frames */
CODE
{
// Our task is to convert every two-byte sequence of the
// form (F0, XX) to the single byte (F0 or XX). This
// method is used to encode F0, F1, F2.

enum { STUFF_FLAG = 0xF0 };
int iIn, iOut;
// Initialize the arrays. Important: without these lines
// this routine will access random memory and crash.
// We don't know how big the output arrays need to be, but
// we're sure that they won't be bigger than the original,
// so we'll allocate enough memory to cover the worst case.
// We will reallocate later when we know the real size.
ausLowIndex.SetSize(inbytAvailableLayer);
ausHighIndex.SetSize(inbytAvailableLayer);
abVirtualFrame.SetSize(inbytAvailableLayer);
// Process each byte in the frame

for (iIn = iOut = 0; iOut < inbytAvailableLayer; iOut++)
{

// Is this byte a stuff flag?
if ((abytLayer[iOut] == STUFF_FLAG)
&& (iOut != inbytAvailableLayer - 1))
{

// The previous byte was an introducer and this
// one is too. Copy this byte into the frame and
// set the down links so that the byte appears to
// have come from this byte and the previous one.
ausLowIndex[iIn] = (unsigned short) iOut;
ausHighIndex[iIn] = (unsigned short) (iOut + 1);
abVirtualFrame[iIn++] = (BYTE)(abytLayer[++iOut] | 0xF0);

TELEDYNE LECROY Chapter 8 Frame Transformers

118 DecoderScript ReferenceManual and User Guide

// Set the flag that the frame has been
// transformed. Note that this is an optimization.
// On those frames that have no escape characters,
// output frame is the same as the input frame, so
// no transformation is necessary.
bFrameTransformed = true;
// The previous byte was an introducer and this
// one is too. Copy this byte into the frame and
// set the down links so that the byte appears to
// have come from this byte and the previous one.
ausLowIndex[iIn] = (unsigned short) iOut;
ausHighIndex[iIn] = (unsigned short) (iOut + 1);
abVirtualFrame[iIn++] = (BYTE)(abytLayer[++iOut] | 0xF0);
// Set the flag that the frame has been
// transformed. Note that this is an optimization.
// On those frames that have no escape characters,
// output frame is the same as the input frame, so
// no transformation is necessary.
bFrameTransformed = true;

}
else
{

// Just copy this byte to the new frame
ausLowIndex[iIn] = (unsigned short) iOut;
ausHighIndex[iIn] = (unsigned short) iOut;
abVirtualFrame[iIn++] = abytLayer[iOut];

}
}
// Now we know the correct size of the frame, so if we are
// transforming, then set the size. If this step is not done,
// then the end of the frame will contain garbage.
// If bFrameTransformed is false, then the transformation will
// be skipped completely, so there is no point using any more
// time.
if (bFrameTransformed)
{

ausLowIndex.SetSize(iIn);
ausHighIndex.SetSize(iIn);
bVirtualFrame.SetSize(iIn);

}
}
ENDCODE

8.2 Output Variables
The Frame Transformer creates a new copy of the layer data. It works with the following output variables:

Abyte& abVirtualFrame is the array that receives the transformed layer. So abytLayer holds the pre-transform
data and abVirtualFrame has the post-transform data.

Aushort& ausLowIndex and ausHighIndex serve to relate how the old data maps into the new. For each byte
abVirtualFrame[i], ausLowIndex[i] holds the index in abytLayer of the first transformed byte and ausHighIndex
[i] contains the index in abytLayer of the last transformed byte. These values allow for those bytes that
correspond to the selected byte or bytes in the Decode Pane to be highlighted in the Event Pane.

Chapter 8 Frame Transformers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 119

The bool bFrameTransformed is set to true if the method transforms the frame. Depending upon what data is
found in the layer, the method may or may not perform any actual transformation. If no transformation is
done then bFrameTransformed should be set to false and the other outputs can be left unset. This setting will
promote efficiency - two identical copies of a frame will not be stored.

8.2.1 Examples of ausLowIndex and ausHighIndex
Suppose that, in some hypothetical transformation, nulls are discarded and 10 is an escape character that causes
the character following it to be used after 20 has been subtracted from it. Then, if abytLayer comprises [00, 10,
25], abVirtualFrame will end up containing [5], ausLowIndex[0] will be 1 and ausHighIndex[0] will be 2.

A slightly more complicated example

If abytLayer comprises [00, 10, 25, 10, 26], then abVirtualFrame will contain [5, 6], and the following will be true:

abVirtualFrame[0] = 5, ausLowIndex[0] = 1, ausHighIndex[0] = 2

abVirtualFrame[1] = 6, ausLowIndex[1] = 3, ausHighIndex[1] = 4

Another way of looking at it would be like this:

Index 0 1 2 3 4

Old Data 00 10 25 10 26

New Frame Data 5 6

ausLowIndex 1 3

ausHighIndex 2 4

Looking at index 0 of the new record, ausLowIndex and ausHighIndex are 1 and 2 respectively because it took
both the 10 and 25 bytes to make up the 5 byte. Note that index 0 in the old record is ignored.

Looking at index 0 of the new record, ausLowIndex and ausHighIndex are 1 and 2 respectively because it took
both the 10 and 25 bytes to make up the 5 byte. Note that index 0 in the old record is ignored.

Rules: any instance of BARNEY is to be replaced with FRED. Any Instance of RUBBLE is to be replaced with
FLINTSTONE.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Old Data 1 2 3 B A R N E Y 4 5 6 R U B B L E

New Data 1 2 3 F R E D 4 5 6 F L I N T S T O N E

ausLowIndex 0 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 ffff ffff ffff ffff

ausHighIndex 0 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 ffff ffff ffff ffff

Note: ffff means 0xffff. ausLow/HighIndex are arrays of unsigned. You can’t use -1.

The thing here is that we don’t have a simple byte for byte substitution. We actually have two problems.

Barney, a 6 character token has been replaced by Fred, a 4 character token. There are simply not enough
characters in the new message to account for every character in the old. We do the best we can by mapping as
much as we can. Note that at index 7 we mapped the final character in Fred to the last three characters of Barney.

TELEDYNE LECROY Chapter 8 Frame Transformers

120 DecoderScript ReferenceManual and User Guide

Rubble, a 6 character token has been replaced with Flintstone, a 10 character token. We map the first 6
characters and put in -1s for the last four.

An alternative might be this:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Old Data 1 2 3 B A R N E Y 4 5 6 R U B B L E

New Data 1 2 3 F R E D 4 5 6 F L I N T S T O N E

ausLowIndex 0 1 2 3 3 3 3 9 10 11 12 12 12 12 12 12 12 12 12 12

ausHighIndex 0 1 2 8 8 8 8 9 10 11 17 17 17 17 17 17 17 17 17 17

The problem here is that the first part of the message was never in this frame. We can’t map a character back to
the previous frame so we need placeholders in the Low and High Index arrays to indicate that we didn’t get this
data from the frame.

Chapter 8 Frame Transformers TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 121

122 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 8 Frame Transformers

Chapter 9 Decoder Data Objects
In this chapter we discuss Decoder Data Objects, the mechanism by which communication between different
methods, different frames, different streams, and different layers is achieved. This chapter is completely self-
contained; if you think you will never need to write a Decoder Data Object then you may safely skip it.

A Decoder Data Object (or data object for short) is a named C++ object that holds data for you. You freely define
the data area of each data object you use to suit your purpose.

Storing and retrieving data objects is a complex topic that is not intuitive. Before you begin writing a data object, it
is important to understand the flow of compiling and reconstructing frames so you understand what is required in
a data class and why.

9.1 Understanding How a Decoder Process Affects Data Objects
There are two phases in the decoding of a frame.

First, when a capture file is first opened or data is first captured, all frames are processed in the order they are
received and certain information is saved in the FRM companion file (this file is stored in the same directory as the
capture file, and is given the name of the capture file but with an FRM extension). This is called compiling.
Compilation happens only once with each frame as it is received. The only output of this phase is the FRM file.

Second, the frame is processed for display as text on the screen. This is called reconstruction. The output of this
phase is the text the user sees. Reconstructing the frame may involve retrieving information about the frame that
was stored in the FRM file when the frame was compiled. This can happen to any frame, at any time, in any order,
any number of times, as the user moves through the screens and clicks on frames.

The compilation stage saves two things: the stack traversal for the particular frame being compiled, and the
context data that goes with that frame, which is the data saved by a data object. The reconstruction stage retrieves
the context data exactly as it appeared when the frame was first accessed, so that no matter what order the
frames are processed in, the context data is the same as it was when the frame was first compiled.

The compilation and reconstruction phases have some different and some similar needs. The program flow is
explained in detail below. (References to specific parts of the data class, such as GET_DATA_FROM_A_BYTE_
ARRAY, are explained later in this chapter in sections Decoder Data Object Syntax and Using Decoder Data Objects
for per-Frame Data).

DecoderScript ReferenceManual and User Guide 123

9.1.1 Compilation Phase
1. All the possible data objects are created and reset.

2. Each frame is decoded, beginning with the first frame, and sequentially proceeding through each
successive frame. Therefore, if a value is changed in your internal data object during the processing of a
frame, you know that the value will be retained when the next frame calls your data object.

3. Just before the first time a data object is called in a frame, PUT_DATA_INTO_A_BYTE_ARRAY is called to
get a copy of the beginning value of the data object (the data object puts data into a byte array for the
frame compiler to read). Note that this is done for each frame.

4. All frame processing is done, including calls to methods that may use and/or change the data object.

5. The next protocol information is determined, possibly with the help of the data object.

6. All of the data objects are given a chance to change or replace the data that they supplied in step 3 through
a call to OPTIMIZE_DATA.

7. The frame's protocol stack information and all the data objects are saved in a record in the FRM file.

9.1.2 Reconstruction Phase
1. A particular frame is requested. Frames are requested in response to user actions (filtering, sorting,

scrolling through the displays, etc.), which means that this could be any frame at all, in any order.

2. The record corresponding to that frame is loaded from the FRM file. At this point, the stack used in this
frame is known, and all the data objects that are needed are known.

3. The needed data objects are initialized, and loaded with the data that was saved in the FRM file. This is
done with the GET_DATA_FROM_A_BYTE_ARRAY call, in which the data object gets data from a byte array.

4. All frame processing is done, just like in the compilation phase, except that PROCESSING type methods are
not called; however, the FORMAT and VERIFY methods are.

5. The decoded data is now used. The data are the actual strings that appear on the display for a particular
frame, along with some supporting information.

There is a pretty big difference in how the compiling and reconstruction phases use their data, and that makes a
difference in what needs to be saved. The compiling phase can count on getting frames in order, and therefore
knows that any data changed by the previous frame will be the same for the next frame. The reconstruction phase
can only count on the fact that the frames will NOT be accessed in any order, and therefore you can only
guarantee data that you set yourself each time a frame is accessed. This is the reason for the elaborate PUT
DATA... OPTIMIZE DATA… GET DATA... functions. They straighten out the data object before the display instance
gets control of it.

For example, if you have a command/response protocol where you need to know which command was sent in
order to decode the response properly, the compiling instance can guarantee that the command will have been
decoded before the corresponding response frame is encountered. In contrast, the reconstruction instance gets
its data from the FRM file and so only has access to what was saved in the record for that frame.

Other considerations:

l Do not save any variables that control what the next protocol is. They will not have any effect in the
reconstruction phase.

TELEDYNE LECROY Chapter 9 Decoder Data Objects

124 DecoderScript ReferenceManual and User Guide

l Many times a data object will have data that is useful for one frame, but not another. You don't need to save
data that is not actually accessed during that frame.

l Sometimes, a lot of data is required to make a single decision. After you make the decision, perhaps you can
just save the result instead of all the data used to make the decision.

9.1.3 Implications of Phases
The compiling and the reconstruction phases can happen simultaneously. For example, the reconstruction phase
is being done on frame 10 because the user clicked on it while the compiling phase is occurring for frame 34. This
means that there are two instances of each data object: the one used for compiling and the one used for
reconstruction.

You should not declare variables in the common section of method files because variables in the common section
exist in only one place. This means that the variable will be shared between the compiling and reconstructing
instances of a data object. If the user clicks on frame 10 while frame 34 is being compiled, the frame 10
reconstruction instance and the frame 34 compiling instance will be accessing and very likely changing the same
variable at the same time.

If the FRM file exists when a capture file is opened and it is up-to-date, the compilation phase doesn't occur. This
means that the compiling instance of the data object doesn't exist, so any assumptions made on the value of a
variable change whether there is an FRM file or not.

If a data object is written generically, it could be used in two different places by giving a different name to it. This is
why you have to supply a data object name as the first parameter to methods that use it. Having one traditional
data object for the two different instances will not work.

9.1.4 Ways to Share Data at Different Points of the Decoding Process
The following are the possibilities for sharing data. Your situation will fall into one of these categories. Note that
you may mix these types in the same data object if you are careful to keep your member data straight.

1. Sharing data between two fields in the same layer.

You can probably simply use a FIELD to hold the value and not use a data object at all. For instance, if the
first field in a decode is a type indicator, later on in the layer you can refer to that field to figure out how to
interpret the data. Using the STORE keyword allows you to save whatever data you need in a FIELD.

2. Sharing data between two layers in the same frame.

Sometimes a layer needs to know what a value was in a previously encountered layer in the current
frame. For instance, if ABC protocol contains a "frame type" field, and XYZ protocol, which is farther along
in the stack, needs the value of that field to know how to decode itself, the ABC layer needs to save the
"frame type" for the XYZ layer. In most cases you can simply use the standard methods
StoreIntraframeField and IntraframeField to share data between two layers of the same frame. But if the
data is complex enough you'll need to use a data object. However, since all the information is present in
the current frame, it can be reconstructed without any outside help. Therefore, the data object you create
would not need the PUT_DATA_INTO_A_BYTE_ARRAY, OPTIMIZE_DATA, and GET_DATA_FROM_A_BYTE_
ARRAY sections since nothing needs to be saved during compilation and retrieved during reconstruction.

3. Sharing data between two frames.

This is the more complicated case. Sometimes one frame contains a command type, and, when decoding
the response frame, you need to know what kind of command was sent because the response frame has a
different format. In most cases you can use the standard methods StorePersistentField and PersistentField
to share data between two frames. But if you have special needs you need a data object and you need to

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 125

save the data between frames during compilation with PUT_DATA_INTO_A_BYTE_ARRAY (and possibly
OPTIMIZE_DATA) and retrieve that data during reconstruction with GET_DATA_FROM_A_BYTE_ARRAY.
See section Using Decoder Data Objects for per-Frame Data later in this chapter for details.

9.2 Decoder Data Object Syntax
A Decoder Data Object is defined as a special kind of C++ class that is similar to a Frame Recognizer. It takes the
following form:

DECODER_STATIC name [PER_STREAM] [VERSION number]
<class stuff such as declaration of member variables.>
@CTOR
<code - Constructor>
@DTOR
<code - Destructor>
@RESET
<code - Called when there is a reset. This means forget everything! Called, for example, when the

protocol stack changes.>
@EVENT_HANDLER
<code - Called to NOTIFY type events. See below.>
@PUT_DATA_INTO_A_BYTE_ARRAY
<code - Called to save data from the data object.>
@OPTIMIZE_DATA
<code - Called to save data from the data object.>
@GET_DATA_FROM_A_BYTE_ARRAY
<code - Called to load data into the data object.>
@IMPLEMENTATION
<code - Anything else that needs to be defined, such as private functions.>
@END_STATIC

With one exception, all of the code blocks are optional. If a block is omitted then its tag (e.g. @RESET) should be
omitted as well. The exception is that OPTIMIZE_DATA will run only if PUT_DATA_INTO_A_BYTE_ARRAY is defined
(PUT_DATA_INTO_A_BYTE_ARRAY can be empty however).

At this point we can explain how a data object works. You define a data class for each set of data that you want to
maintain. Then, in your custom methods, you call member functions in the data object to manipulate the data as
needed. You can use any number of instances of a data class, each distinguished by a unique name. This is the data
name referenced in the section on Intra-frame and Inter-frame Data in Chapter 4 Putting It All Together on page
37.

If PER_STREAM is present in the data class definition, then any instance of the data class is created strictly for use
within the current stream. In other words, if you use a data object called ABC then a separate ABC will exist for
each stream. The instance for one stream cannot "see" another stream's instance. If you need to pass data
between streams then, obviously enough, you use a data class that does not have the PER_STREAM attribute.

If VERSION is not present, the version is zero. Otherwise, it is whatever number is given. This is important because
the output of the data object is saved to the FRM file, and is read back in when a capture file is opened. If the data
to be saved changes, it won't be read in correctly from an old FRM file. Therefore, if you change the data format in
a data object, you must change the version number so that the FRM file is thrown away and rebuilt.

Just before the first time a data object is called in a frame during the compilation phase, PUT_DATA_INTO_A_
BYTE_ARRAY is called to get a copy of the beginning value of the data object. Note that this is done for each frame,
and the beginning value is the value the data object had when the frame was first encountered.

OPTIMIZE_DATA is called to get a copy of the value of the data object after the frame has been compiled.

TELEDYNE LECROY Chapter 9 Decoder Data Objects

126 DecoderScript ReferenceManual and User Guide

GET_DATA_FROM_A_BYTE_ARRAY is used to initialize data objects during the reconstruction phase and load them
with the data that was saved in the FRM file.

You cannot define parameters for a data object.

9.2.1 Variables Available to Data Decoder Objects
There are three values available to data objects:

Variable Name Available to...
CArray abStatic PUT_DATA_INTO_A_BYTE_ARRAY,

OPTIMIZE_DATA, and

GET_DATA_FROM_A_BYTE_ARRAY

CString szIniFile EVENT_HANDLER

eFdNotifyEventReasons nerReason EVENT_HANDLER

Table 9.1 - Variables Available

9.2.1.1 abStatic Variable
CArray abStatic is a writable/extendable array to the PUT_DATA_INTO_A_BYTE_ARRAY and OPTIMIZE_DATA
sections and a constant array to the GET_DATA_FROM_A_BYTE_ARRAY section. To see how to code these
sections, see our examples below.

9.2.1.2 szIniFile Variable
const CString szIniFile holds the path of a temporary file that contains certain items that may be useful to an event
handler. This file is arranged as a standard Windows INI file and should be accessed using the
GetPrivateProfileString and GetPrivateProfileInt functions. An event handler should pick information from this file
as needed but should never "remember" the file name.

The contents of the file are illustrated by this example:

[Directories]
DecoderDirs=C:\Program Files\MyProductInstallation\App Data\Decoders\;C:\ Program

Files\MyProductInstallation\My Decoders\;
[Config]
StreamName0=DTE
CharsPerSec0=10416.6666666667
TicksPerChar0=22916
StreamName1=DCE
CharsPerSec1=10416.6666666667
TicksPerChar1=22916

DecoderDirs in the Directories section contains a list of directories that may contain decoder (.DEC) files.

In the Config section, StreamNameN gives the name for the stream when iStream equals N. CharsPerSecN gives
the maximum throughput for stream N in characters per second. And TicksPerCharN gives the number of 900-
nanosecond ticks per character time for stream N. Note that the name "CharsPerSec" is used for good reason: this
counts characters no matter what size they are (e.g. 7-bit or 8-bit) not necessarily bytes.

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 127

9.2.1.3 nerReason Variable
const ePdaNotifyEventReasons nerReason holds the code for an event notification. It is defined as an enum of the
following symbols:

nerCbStarted => CaptureBufferStarted

nerCbReset => Capture Buffer Reset

nerIoConfigChanged => I/O Configuration Changed

nerInitialize => Initialization

Table 9.2 - nerReason enum

9.3 Using Decoder Data Objects for per-Frame Data
As we have indicated, you can use a data object to hold data that has any scope less than or equal to one analysis
session. The most common use of data objects, however, is to keep state data that may change with each frame.
This is where the PUT_DATA_INTO_A_BYTE_ARRAY, OPTIMIZE_DATA, and GET_DATA_FROM_A_BYTE_ARRAY
sections come into play.

PUT_DATA_INTO_A_BYTE_ARRAY is called just before the first time a data object is called in a frame during the
compilation phase. It puts the data object's data into byte array abStatic. A good way of saving the data into abStatic
is with class CStaticStorage (described below). If nothing needs to be saved then abStatic should be sized to zero
bytes. It is perfectly okay to save a different amount of data for different frames.

What data should you save? The answer is the exact data you will be needing to reconstruct the frame. In the
PUT_DATA_INTO_A_BYTE_ARRAY section you do not know precisely what data that will be because it is called
before the frame is compiled. If you include an OPTIMIZE_DATA section, it is called when the frame has finished
compiling. At that point you can then figure out which data is really necessary, and you can change abStatic to
make it shorter. Here is an example:

@OPTIMIZE_DATA
/*
This should not save the items that don't need to be saved. Create a copy of the data so we can

manipulate it without changing this instance. We then initialize it with the data that would be saved if
this routine didn't exist.

*/
CDecoderStaticMyStatic old("");

old._ReadDataFromAByteArray(abStatic);
/*
We now figure out which values were actually used. In this example, let's assume that the data consists

of an array, only one of which is actually used for any particular frame. We then only have to save
that one entry. We set a boolean when we process a particular entry.

*/
bool bChanged = false;
for (int i = 0; i < 255; i++)
{

if (!old.m_abJustUsed[i])
{

old.m_aBigDataItem[i].RemoveAll();
bChanged = true;

}
}
if (bChanged)

TELEDYNE LECROY Chapter 9 Decoder Data Objects

128 DecoderScript ReferenceManual and User Guide

old._PutDataInAByteArray(abStatic);

When a frame is being reconstructed (such as when a decode for a frame is to be displayed), then the data for the
chosen frame is copied from the FRM file to abStatic and GET_DATA_FROM_A_BYTE_ARRAY is called to recreate
the state of the data object as it was when that frame was compiled. If abStatic is empty that is always an explicit
reset signal; GET_DATA_FROM_A_BYTE_ARRAY will not be called in cases when no data was saved. Instead, the
RESET section is executed.

We suggest that when you first write your method, you use only PUT_DATA_INTO_A_BYTE_ARRAY and GET_
DATA_FROM_A_BYTE_ARRAY (i.e. don't use OPTIMIZE_DATA) and save your entire object until you have your
decoder debugged. You may find, though, that if you have a lot of data in your data object that the FRM file
becomes much too large. If you find that to be the case, you may be able to save less data (sometimes much less)
by using OPTIMIZE_DATA as described above.

OPTIMIZE_DATA is also needed when a FRAME_BEFORE_DECODING statement is being run by the decoder. A
FRAME_BEFORE_DECODING statement is executed during compilation but not during reconstruction. Therefore,
the data read by GET_DATA_FROM_A_BYTE_ARRAY during reconstruction must include the output of the method
invoked by FRAME_BEFORE_DECODING. PUT_DATA_INTO_A_BYTE_ARRAY doesn't help because it runs before
FRAME_BEFORE_DECODING. OPTIMIZE_DATA does the trick because it runs after the frame is compiled. Here's
an example (the method invoked by FRAME_BEFORE_DECODING is not shown):

DECODER_STATIC pima_superframe
public:

bool m_bSuperframing;
int m_iBytesLeft;
Abyte m_abFrameSoFar;

@RESET

m_bSuperframing = false;
m_iBytesLeft = 0;
m_abFrameSoFar.RemoveAll();

@PUT_DATA_INTO_A_BYTE_ARRAY

abStatic; // get rid of the "unreferenced" warning

@OPTIMIZE_DATA

CStaticStorage ss(m_abFrameSoFar.GetSize()+8);
ss.Store(m_bSuperframing);
ss.Store(m_iBytesLeft);
if (m_abFrameSoFar.GetSize() < 32000)

ss.Store(m_abFrameSoFar);

else
{

Abyte abTruncatedFrame;
abTruncatedFrame.Append(m_abFrameSoFar);
abTruncatedFrame.SetSize(32000);
ss.Store(abTruncatedFrame);

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 129

}
ss.RetrieveStream(abStatic);

@GET_DATA_FROM_A_BYTE_ARRAY

CStaticStorage ss(abStatic);
ss.Get(m_bSuperframing);
ss.Get(m_iBytesLeft);
ss.Get(m_abFrameSoFar);

@END_STATIC

Exactly when are these sections called? The short answer is only when necessary. They are not called unless the
data is actually used in the current frame. That means that a FIELD must be executed that contains a method that is
defined with the USES_STATIC line in it for that particular data object. Normally you won't have to worry about
that, but that distinction can be confusing as you are debugging.

Frames are preprocessed as they come in (either from a live source or a capture file) to create the FRM file of
per-frame data object snapshots. This file is normally saved between runs so this time-consuming preprocessing
need be done only once. We must note one caveat about this process: When you load a capture file, a
background thread is launched to perform the preprocessing. Frames that have been captured but not yet
preprocessed are marked with green circles in the left margin of the Summary Pane. Such frames are decoded
when they are displayed, but since the context provided by preprocessing is absent the decode might be wrong.
Once the frame is preprocessed, it is marked with a green dot if it contains the layer in the Summary dropdown,
otherwise it's not marked at all (the left margin is blank).

9.3.1 A class to make saving and retrieving easier and more compact
There is a class provided that can make the saving and retrieving of data easy. You do not have to use it, but it
useful in most cases. It is called CStaticStorage and is used like this:

@PUT_DATA_INTO_A_BYTE_ARRAY
// write data to abStatic
CStaticStorage ss(iApproximateSizeNeeded);
ss.Store(m_iFirstVariable);
ss.Store(m_abSecondVariable);
ss.RetrieveStream(abStatic);

@GET_DATA_FROM_A_BYTE_ARRAY
// read data from abStatic
CStaticStorage ss(abStatic);
ss.Get(m_iFirstVariable);
ss.Get(m_abSecondVariable);

There are two constructors, one for getting the data and one for putting the data. When putting the data, make a
guess about how large the array will be and pass that to the constructor. That is for efficiency only. If you guess too
low, then extra memory allocation will occur that will slow down the routine, and if you guess too high, then
memory is wasted. That memory is recovered soon, though, so it is better to guess a little high.

Then make sure that the Get() and Store() functions are parallel; that is, the variables should be declared in the
same order in both routines. Both of these routines are overloaded, so you can call them with many basic types:
bool, int, char, __int64, Abyte&, unsigned int, unsigned char, insigned __int64. If you need to save another type,
then you will have to break it down yourself and call these functions on the pieces.

TELEDYNE LECROY Chapter 9 Decoder Data Objects

130 DecoderScript ReferenceManual and User Guide

The last line when saving the data is always ss.RetrieveStream(abStatic); This takes the saved data from the class
and puts it into the real data object variable.

Beyond the ease of use, another advantage of this class is that it compresses the data as it saves it. For instance, if
you have a 64-bit integer to save, it would take eight bytes to save it normally. This routine compresses it, so that
depending on the contents of that field, only between one and eight bytes are required.

9.4 Error Processing
Like a Frame Recognizer, a data object may throw a CfdFrameException exception when inside a routine that is
called by a method. A data object should not generate an exception in any other circumstance.

9.5 Writing Methods that Use Decoder Data Objects
Data objects are very flexible because they can be accessed by methods of any kind and can store any kind of data
you choose. Probably the most common use is with command-response protocols where any particular response
can be fully interpreted only when you know what command it was sent in response to. In such a case, when
decoding a command, you want to store away the command code and then retrieve it when decoding the
subsequent response. This needs to be done with some care so that you can deal gracefully with situations such as
a capture that starts with a response or a response to a command that appeared to be garbled.

Let us suppose that you want to save a field value in a data object as part of the decoding process. You could use a
PostProcessing Method along the following lines (the full implementation is in the sample method file):

POSTPROCESSING
METHOD __MyPostProcessor__ USES_STATIC __MyStatic__
CODE

pStatic->SetCommandCode((int) ai64Field[fldParam1]);
ENDCODE
PARAM "Field to be save" field

Following the method name you put the keyword USES_STATIC and then the name of the data class. This means
that a method may not use more than one data object but that is hardly a significant restriction. Then you
automatically get a variable called pStatic that points to the appropriate instance of your data object. Here we
obtain the value of the field named as the parameter, cast it to a (32-bit) integer and store it into a member
variable called through the data object's member function SetCommandCode.

The last piece of the puzzle is to see how you call the method:

RETRIEVE (StoreCommandCode Data command_code)

This method invocation has what looks like two parameters even though the method defines only one. What looks
like the first parameter (Data) is actually the name of the data object instance that the method is to use. Whenever
a method uses a data object, that method must be called with the instance name before the parameters. Here is
an example where two instances of a data object are used:

FIELD x_field (Fixed 1) RETRIEVE (MyMethod Fred 4)….

FIELD y_field (Fixed 1) RETRIEVE (MyMethod Wilma 5)….

An instance of a data object is created automatically on the first occasion that it is referenced. It then persists for
the duration of the analysis session. Without careful design, an excessive amount of memory can be used. Don't
use data objects indiscriminately!

Here are some further guidelines on using data objects efficiently. Normally, two in-memory copies of each data
object variable are maintained (one for compiling and one for reconstruction), plus a set of copies for each

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 131

instance name you use. If your data happens to set up, say, a large array that is never changed you can avoid this
duplication by declaring the variable to be static in the C++ sense. For example:

Here are some further guidelines on using data objects efficiently. Normally, two in-memory copies of each data
object variable are maintained (one for compiling and one for reconstruction), plus a set of copies for each
instance name you use. If your data happens to set up, say, a large array that is never changed you can avoid this
duplication by declaring the variable to be static in the C++ sense. For example:

static CmemoryHog s_memHog;

We repeat: This only works if the variable s_memHog is constant. If it changes, you must not declare it static.

Also keep the size of the abStatic array in PUT_DATA_INTO_A_BYTE_ARRAY as small as you can. It might even pay
to compress data if you can do that efficiently. Note that the CStaticStorage class automatically compresses data
somewhat. The reason for keeping the size of the array small is that this array is saved by writing it to a file.

The one rule about programming data objects is that a its definition and all methods that reference it must be in
the same DLL. This means that they must either be in the same .MTH file or at least in .MH files that are all
included into one .MTH.

9.5.1 Multiple Statics and Constants
Decoder writers can write methods that use both the static and constant objects. This feature is included in builds
after 18-May-2009.

9.5.1.1 Usage Case 1: Multiple Static and Constant Cbjects

METHOD xyz USES_STATIC name name1 name2.. USES_CONSTANT name name1 name2..
CODE

pStatic
pStatic1
pStatic2
..
pConstant
pConstant1
pConstant2
…

ENDCODE

The above order should be strictly followed to specify the static and constant objects.

9.5.1.2 Usage Case 2: Multiple Static Objects

METHOD xyz USES_STATIC name name1 name2..
CODE

pStatic
pStatic1
pStatic2
..

ENDCODE

9.5.1.3 Usage Case 3: Multiple Constant Cbjects

METHOD xyz USES_CONSTANT name name1 name2..
CODE

pConstant

TELEDYNE LECROY Chapter 9 Decoder Data Objects

132 DecoderScript ReferenceManual and User Guide

pConstant1
pConstant2
…

ENDCODE

9.6 A Simple Example
Let us examine a real use of a data object. This example is the code behind the StorePersistentField and
PersistentField methods. These methods are generic inter-frame data methods that allow a decoder writer to
save a field value from frame to frame.

DECODER_STATIC __Persist__
// Declare the class just like in C++
private:

__int64 m_i64Value;
int m_iSize;
bool m_bIsSet;

public:
void Set(__int64 i64Value, int iSize)
{

m_i64Value = i64Value;
m_iSize = iSize;
m_bIsSet = true;

};

bool Get(__int64& i64FieldValue, int& iSize) const
{
// be sure the object is initialized

ASSERT((m_bIsSet == false) || (m_bIsSet == true));
i64FieldValue = m_i64Value;
iSize = m_iSize;
return m_bIsSet;

};
void Clear()
{

_Reset();
}

@CTOR
// Nothing has to be initialized here, so this section can be
// omitted. This is for initializing one-time items. The RESET
// section will be called right after the initialization.

@DTOR
// This is for freeing memory that we've allocated. In this case,
// there is nothing to free, so this section can be omitted.

@PUT_DATA_INTO_A_BYTE_ARRAY
// If the data needs to be remembered for new frames, then we
// need a way to save and restore it to the FRM file. This
// section saves the class as a BYTE array that can be streamed
// to the FRM file. It is important to keep the size of the array
// to the smallest needed, to keep the size of the FRM file down.
//
// If this section is omitted, then the RESET section will be
// called at the beginning of each frame.

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 133

//
// abStatic is to be filled in
if (m_bIsSet)
{

int iSize = (m_iSize+7)/8 + 1;
abStatic.SetSize(iSize);
BYTE* pb = abStatic.GetData();
*pb++ = (BYTE)m_iSize;
memcpy(pb, (BYTE*)&m_i64Value, iSize-1);

}
else

abStatic.RemoveAll();
@GET_DATA_FROM_A_BYTE_ARRAY
// This is the complement of the above section. It takes the BYTE
// stream and turns it back into the class data.
//
//abStatic contains the static

m_bIsSet = true;
const BYTE* pb = abStatic.GetData();
m_iSize = *pb++;
m_i64Value = 0;
int iSize = (m_iSize+7)/8 + 1;
memcpy((BYTE*)&m_i64Value, pb, iSize-1);

@RESET
// This is called right after the object is constructed, and
// through various other events. It should set the object to a
// known state.

m_i64Value = -1;
m_iSize = 0;
m_bIsSet = false;

@END_STATIC

Here is the method that uses this Decoder Data Object:

RETRIEVING_DATA
METHOD __StorePersistentField__ USES_STATIC __Persist__
/*

Saves the value of the current field in the data object
specified. The item after the method name must be the name of
the data object in which the field is to be stored.
Data is retrieved using the __PersistentField__ method.

*/
CODE

pStatic->Set(i64CurrentField, isizbitCurrentField);
ENDCODE
RETRIEVING_DATA
METHOD __PersistentField__ USES_STATIC __Persist__
/*

Retrieves a field stored previously by a __StorePersistentField__ method.
When using this method, the first item after the method name
must be the name of the data object in which the field
was stored.

*/
CODE

if (!pStatic->Get(i64FieldValue, iFieldSize))
throw CFdFieldException("Data not present (The field that the data comes from was not

TELEDYNE LECROY Chapter 9 Decoder Data Objects

134 DecoderScript ReferenceManual and User Guide

encountered.)");
ENDCODE

In one decoder, declare a field like this --

FIELD code (Fixed 1) RETRIEVE (StorePersistentField KeepThisCode) (Decimal) "Code"

In another decoder, or in a different path in the same decoder, declare a field

like this --

FIELD retrieved_code (Fixed 0 bits) RETRIEVE (PersistentField KeepThisCode) (Hex) "Retrieved
Code"

9.7 A Complex Example
Here is an example of a data object that makes use of most of the code sections. It is taken from the decoder for
Novell's NetWare Core Protocol (NCP.DEC). NCP is the protocol that carries commands for file and print
operations from a client to a NetWare server, and responses in the reverse direction.

The purpose of the NCP data object is a common one, to match responses to commands. Like many protocols,
NCP sends commands and responses in a ping-pong fashion. An NCP response does not carry any indication of
what type of command it is a response for. For the NCP client, this is no problem: any response is going to be for
the last command it sent. Each command that is detected must be noted so that the response can be properly
interpreted when it comes. In the case of NCP, the difficulty of doing this is compounded by the fact that a single
physical connection may carry multiple logical connections (in other words, several independent NCP sessions).

Let's look at the NCP decoder's use of its data object in a top-down fashion, starting with the decoder
statements that make use of it:

POSTPROCESSING (NcpDataProcessing Fred conn_numb function_code sub_func type sequence)
FIELD reply_function_code (Fixed 0 byte) RETRIEVE (NcpResponseFunction Fred sequence conn_

numb function)(TABLE functions) IN_SUMMARY Function 70 "Function Code"
FIELD reply_sub_function_code (Fixed 0 byte) RETRIEVE (NcpResponseFunction Fred sequence

conn_numb subfunction) (Decimal) IN_SUMMARY "Sub-Function" 70 " Sub-Function"

The first thing you may notice is that just a single instance of the data object is used and that instance is called
"Fred". The PostProcessor Method, NcpDataProcessing, saves two pieces of information when the message is a
command. The first of these is a function code, a number that identifies the operation such as "Erase File". Some
functions have subfunctions, for example the function could be "Printer Functions" and the subfunction "Close
Spool File". The first parameter is the logical connection number. Then come the function and subfunction codes,
the actual data that needs to be saved. The fourth parameter is the message type (i.e. command, response, or one
of a few others) and the last is a sequence number that is embedded in each message.

The Retrieval Method, NcpResponseFunction, retrieves the function or subfunction code for a given connection
and sequence number. The last parameter is a list type indicating whether the function or subfunction code is
wanted. Here are the methods themselves:

POSTPROCESSING
METHOD __NcpDataProcessing__ USES_STATIC __Ncp__

/* Handles data for the NCP decoder. NCP response
* frames do not carry the command function they are responding
* to inside the frame. This saves the command function on
* request frames so subsequent response frames can be decoded \
* accurately. */

CODE
bool bIsCommand = (ai64Field[fldParam4]==0x2222);
bool bIsResponse = (ai64Field[fldParam4]==0x3333);

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 135

pStatic->Update(bIsCommand, bIsResponse, (BYTE)ai64Field[fldParam5],
(WORD)ai64Field[fldParam1], (BYTE)ai64Field[fldParam2], (BYTE)ai64Field[fldParam3]);

ENDCODE
PARAM "Which field has the connection number?" field
PARAM "Which field has the function code?" field
PARAM "Which field has the subfunction code?" field
PARAM "Which field has the cmd/resp?" field
PARAM "Which field has the sequence number?" field

RETRIEVING_DATA
METHOD __NcpResponseFunction__ USES_STATIC __Ncp__

/* Handles data for the NCP decoder. This matches
* the response to the previous command. */

CODE
// using the current value of the TNS field, get the value
// from the map. that is what should be returned.
i64FieldValue = pStatic->Retrieve((BYTE)ai64Field[fldParam1],
(WORD)ai64Field[fldParam2], (eParam3 == eSubfunction));
iFieldSize = 8;

ENDCODE
PARAM "Which field has the first key?" field
PARAM "Which field has the second key?" field
PARAM "Do you want the function or subfunction?" list { Function Subfunction }

As you can see, the methods do very little beyond serving as conduits to member functions in the data class. And
that data class is defined as:

DECODER_STATIC __Ncp__
private:

struct Sky
{

BYTE bySeqNum;
WORD wConnNum;
operator unsigned long() const
{

return ((unsigned long)bySeqNum<<16)+wConnNum;
};
bool operator==(const Sky& rhs) const
{

if ((bySeqNum == rhs.bySeqNum) &&
(wConnNum == rhs.wConnNum))
return true;

else
return false;

};
};
struct SfCd
{

BYTE byFunctionCode;
BYTE bySubfunctionCode;

};
struct Spair
{

Sky key;
SfCd value;

};

TELEDYNE LECROY Chapter 9 Decoder Data Objects

136 DecoderScript ReferenceManual and User Guide

CMap<Sky,const Sey&,SfCd,SfCd&> m_map;
public:
void Update(bool bIsCommand, bool bIsResponse, BYTE ucSeqNum, WORD wConnectionNum,

BYTE ucFunctionCode, BYTE ucSubfunctionCode);

__int64 Retrieve(BYTE ucSeqNum, WORD wConnectionNum, bool bWantsSubfunction) const;

@IMPLEMENTATION
void __Ncp__::Update(bool bIsCommand, bool bIsResponse, BYTE ucSeqNum, WORD

wConnectionNum,
BYTE ucFunctionCode, BYTE ucSubfunctionCode)
{

if (bIsResponse)
{

// This is a response, so let's delete the map entry
Sky key;
key.bySeqNum = ucSeqNum;
key.wConnNum = wConnectionNum;
m_map.RemoveKey(key);

}
if (bIsCommand)
{

// This is a command, let's add the map entry
Sky key;
key.bySeqNum = ucSeqNum;
key.wConnNum = wConnectionNum;
SfCd functionCode;
functionCode.byFunctionCode = ucFunctionCode;
functionCode.bySubfunctionCode = ucSubfunctionCode;
m_map[key] = functionCode;

}
}

__int64 __Ncp__::Retrieve(BYTE ucSeqNum, WORD wConnectionNum, bool bWantsSubfunction)
const

{
// using the current value of the TNS field, get the value
// from the map. that is what should be returned.
Sky key;
key.bySeqNum = ucSeqNum;
key.wConnNum = wConnectionNum;
SfCd value;
if (!m_map.Lookup(key, value))
{

return 0xffff; // a value that could never be really in the map is returned if the value was not
found.

}
else
{

if (bWantsSubfunction)
return value.bySubfunctionCode;

else
return value.byFunctionCode;

}
}

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 137

@GET_DATA_FROM_A_BYTE_ARRAY
// read data from abStatic
m_map.RemoveAll();
CStaticStorage ss(abStatic);
int iSize;
ss.Get(iSize);
Sky sKey;
SfCd sValue;
for (int i = 0; i < iSize; i++)
{

ss.Get(sKey.bySeqNum);
ss.Get(sKey.wConnNum);
ss.Get(sValue.byFunctionCode);
ss.Get(sValue.bySubfunctionCode);
m_map[sKey] = sValue;

}

@PUT_DATA_INTO_A_BYTE_ARRAY
// write data to abStatic
int iSize = m_map.GetCount();

CStaticStorage ss(4*iSize);
ss.Store(iSize);

Sky sKey;
SfCd sValue;
POSITION pos = m_map.GetStartPosition();
while (pos != NULL)
{

m_map.GetNextAssoc(pos, sKey, sValue);
ss.Store(sKey.bySeqNum);
ss.Store(sKey.wConnNum);
ss.Store(sValue.byFunctionCode);
ss.Store(sValue.bySubfunctionCode);

}
ss.RetrieveStream(abStatic);
@RESET

m_map.RemoveAll();
@END_STATIC

9.8 A Primer on FRM File
In this section we will abbreviate three terms:

l PD = @PUT_DATA_INTO_A_BYTE_ARRAY

l GD = @GET_DATA_FROM_A_BYTE_ARRAY

l OD = @OPTIMIZE_DATA

As the documents say, there are two phases of processing: compilation and reconstruction.

9.8.1 Compilation
Our static data object is created. Some of the methods (not all) are called and data is saved to the static. Before
each frame is processed, the state of the decoder is written to the FRM file. That’s where PD comes into play. It is

TELEDYNE LECROY Chapter 9 Decoder Data Objects

138 DecoderScript ReferenceManual and User Guide

used to store data from our static to the FRM file using a byte array as an intermediary. This is done to save the
state of the static at ENTRY to each frame. After the frame is processed, OD is called to give us a chance to remove
any data we didn’t really want to save. In summary, PD is called only during the compile phase and before each
frame is processed.

OD is called only during the compile phase and after each frame is processed. Remember, our static and the byte
array are two different things. When OD is called, we don’t mess with our static. We only remove data from the
BYTE_ARRAY that we know we won’t need during reconstruction.

9.8.2 Reconstruction
Our static object is created but it’s not used in exactly the same way. Again, abStatic is the intermediary and is read
from the FRM file. Prior to processing each frame, GD is executed to move data from abStatic to our data object.
That means that we potentially get a whole new copy of our static with each frame. We get whatever was in the
static when our frame was being compiled with some important exceptions. The data that is restored is the data
that was saved with PD. Anything else will be empty strings and 0 values.

This is very important: During reconstruction, we should assume that our static will be completely empty at the
beginning of each frame. The only way to populate it with data is to load it from the FRM file with GD.

During reconstruction, the static is static. Let us say that we have some FORMAT and RETRIEVE methods that
modify the static. If we never call GD, those changed values will persist. This is extremely dangerous. We have no
idea of the order in which frames will be reconstructed or how many times a single frame might be processed.
This is contrary to the nature of the static which is to save information or state from an earlier frame to be used in
a later frame. It is entirely possible that, during reconstruction, the later frame will be processed first. Very bad
things can happen if important data is allowed to persist during reconstruction. Therefore, although it is not strictly
true, the statement above should be viewed that way.

But it gets better. PD is not called at the end of processing for ‘this’ frame. It’s called at the beginning of processing
for the next frame. If you think about it, it makes great sense. What PD is doing is preserving the state of your data
prior to any changes you might make.

Note: If you want to be able to see your static changes intra-frame, youmust useOD to save
your data. Just copy the code from PD into OD.

9.8.3 So...When Are Methods Called?
Some methods are called during both phases and some are ignored during one phase or the other. Perhaps the
best example of a method ignored during the Compile phase is FORMAT. There is no need to make data look
pretty when you aren’t displaying anything. The table below lists all of the method types and when they are called.

Method type Compile Phase Reconstruction
Phase

BOOLEAN ■ ■

BRANCH ■ ■

BYTE_STREAM_FRAMER ■

FORMAT ■

FRAME_TRANSFORMER ■

Table 9.3 - Method Type and Phase of Use

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 139

Method type Compile Phase Reconstruction
Phase

NEXT_PROTOCOL ■

NEXT_PROTOCOL_OFFSET ■

NEXT_PROTOCOL ■

NEXT_PROTOCOL_SIZE ■

POSTPROCESSING ■ ■

PREPROCESSING ■ ■

PROCESSING ■

RETRIEVING_DATA ■ ■

SIZE ■ ■

START_BIT ■ ■

TAG ■

VERIFY ■ ■

Table 9.3 - Method Type and Phase of Use(continued)

Why do we care when methods are called? Some methods, like PROCESSING, are the heavy lifters when it comes
to modifying data in statics. They are only executed during the compile phase and aren’t necessary in the
reconstruction phase. Conversely, the aforementioned FORMATmethod might be considered a prime consumer
of data in the static. It’s only executed at reconstruction time.

Then there are the methods like RETRIEVE and START_BIT that get executed in both phases. It is wise to put logic
in these methods so that the static is not modified during reconstruction. If data is being saved to the static during
reconstruction phase from one method call to another within a frame, perhaps that data would be better saved in
a DecoderScript variable.

9.8.4 What Phase Am I In?
To determine the phase, declare a variable in the static:

bool mutable m_bIsCompiling;

Set it to true at the beginning of @RESET. Set it to false at the end of GD. It will get set to false over and over but
we don’t care. Remember, GD is called only during the reconstruction phase so the first time it’s called, we know
that’s where we are. Easy.

9.8.5 Protocol Example
Let’s say that we have a protocol where we want to save the number of frames of type 100. If the frame is type
100, we will display the number of type 100 frames previously received in the decoder. If it isn’t type 100, we
don’t display the number.

Our static has just one variable int m_count.

Our static has just two methods. One is a PROCESSINGmethod that increments our counter. It is only executed
during the compile phase. The other is a RETRIEVE method that we will use to get the counter from the static. It
would be executed during both phases. Yes, these operations could be done in one method, but bear with me.

TELEDYNE LECROY Chapter 9 Decoder Data Objects

140 DecoderScript ReferenceManual and User Guide

There are just four frames:

Frame 1: 100

Frame 2: 150

Frame 3: 100

Frame 4: 100

Compilation:

l Create the Static. m_count is 0 because @RESETmade it 0.

l We get Frame 1.

o We call PD to store the state of the Static

o We call the RETRIEVE method. m_count = 0. We don’t do much with it.

o We call the PROCESSINGmethod to increment m_count to equal 1

l We get Frame 2

o We call PD to store the state of the Static (m_count = 1)

o This frame is not type 100 so we don’t care about m_count. We don’t call either method.

l We get Frame 3

o We call PD to store the state of the Static (m_count = 1)

o We call the RETRIEVE method. m_count = 1. We don’t do much with it.

o We call the PROCESSINGmethod to increment m_count to equal 2

l We get Frame 4

o We call PD to store the state of the Static (m_count = 2)

o We call the RETRIEVE method. m_count = 2. We don’t do much with it.

o We call the PROCESSINGmethod to increment m_count to equal 3

Reconstruction:

Here, the Static is more of a snapshot viewer. In the FRM file, we have a snapshot of the data in the static for each
frame.

l Create the Static. m_count is 0.

l We load Frame 1.

o We call GD to get the state of the Static (m_count = 0)

o This frame is type 100. We call the RETRIEVE method and display a value of 0.

o When DecoderScript encounters the PROCESSINGmethod call it knows we are reconstructing and ignores
it.

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 141

l We load Frame 2

o We call GD to get the state of the Static (m_count = 1)

o This frame is not type 100 so we don’t care about m_count and we don’t call either method.

l We load Frame 3

o We call GD to get the state of the Static (m_count = 1)

o This frame is type 100. We call the RETRIEVE method and display a value of 1.

o When DecoderScript encounters the PROCESSINGmethod call it knows we are reconstructing and ignores
it.

l We load Frame 4

o We call GD to get the state of the Static (m_count = 2)

o This frame is type 100. We call the RETRIEVE method and display a value of 2.

o When DecoderScript encounters the PROCESSINGmethod call it knows we are reconstructing and ignores
it.

Notice that nothing changed in our static during reconstruction. It’s ok to execute code that might change the
static during reconstruction but it would be overwritten by GD. It is wasteful to do anything that would modify the
contents of the static. All calculations should be done during the compile phase. During reconstruction, we should
just be extracting results from the static. We might ask, what if we did nothing in PD, GD or OD? Good question.
Many things could happen. First of all, our PROCESSINGmethod would not be executed at all during
reconstruction which means that m_count would stay 0. In our test case, we would notice that and fix it right
away. The more eccentric effect has to do with the order in which frames are reconstructed. Because of the FRM
file, frames have no context. We get a snapshot of the static for each and every frame and any frame can be
reconstructed in any order and that’s just what the Frontline products will do. Leaving out communication with
the FRM file is asking for the worst kind of trouble.

Optimization:

Remember, PD is called before each frame. After processing the frame, we might realize that what we stored
with PD was overkill. OD is called after the frame is processed and it’s our chance to remove data that we won’t
need to reconstruct this frame.

Notice in Frame 2, the data stored by PD was not needed during reconstrution. The static was never used for
reconstructing that frame. Since we only are storing two bytes, it doesn’t matter much. If we are writing a static
that keeps lots of data, it could matter a lot.

The thing is that PD is called before the frame is processed during the compile phase so we didn’t know that it was
a waste of time.

So here’s what we do. Set up a Boolean variable that gets set to true only if we would need our data.

In OD, simply call:

if(I don’t need my data)

abStatic.RemoveAll();

TELEDYNE LECROY Chapter 9 Decoder Data Objects

142 DecoderScript ReferenceManual and User Guide

Nothing gets stored. In our example, we would do this for Frame 2 which calls no methods and doesn’t access the
static. GD will try to restore the data but since there is nothing there, the data will be set to 0. This is a good
opportunity to re-enforce a basic concept.

When you are saving data with PD, you are not wiping out your static. All you are doing is setting up your static
data for use during the reconstruction of the current frame. Not saving something during PD is entirely
appropriate if it was not used to decode the frame. The static persists from frame to frame during compile. During
reconstruction, it is constantly overwritten by GD.

Let’s look at our new chronology for Frame 2 more closely:

Compile:

l PD is called to save the contents of the static (waste of time but unavoidable)

l The frame is processed. The type is not 100 so no methods are called. We cleverly put a flag in the static to tell
us if it was accessed or not. It was set to false during PD and would be set to true if either of our methods
were called.

l In OD, we check the flag and see that nothing was used. We know that during reconstruction, we won’t need
any data. We clear out abStatic so that nothing is written to the FRM file.

Reconstruction:

l GD is called and yields no data

l The frame is processed. The type is not 100 so no methods are called. We are unaware that the static is
empty.

Some more considerations:

l We own abStatic. We can and should use the helper class to get and store our data but we don’t necessarily
have to. abStatic is the output of PD, the input to GD and the target of OD. It’s not written until after OD which
is why we get the second chance.

l We might ask, what does GD do if there’s nothing there? Good question. If we use the helper class, it will get
data for us until we quit asking. If there is nothing left, numeric variables will be 0 and CStrings will be empty.
For example, if PD saves 2 ints and GD wants 4, the last two ints returned by GD will be 0s. Conversely, if PD
saves 4 ints and GD only asks for 2, there is no penalty other than wasted space in the file.

l Data is saved by PD without any identifying marks. That is, if we have three variables to save, they are serialized
in the order we save them.We must get them in the same order to avoid a data misalignment and a
subsequent need for headache medication. If we save variable A, then B, and then C, we must retrieve them
in that order.

l The helper class can save and get only basic types. If we have a structure, class or other aggregate construct,
we must save the component variables individually. In the case of an array, we must traverse the array and
save each element. In the case of a class, it is wise to write get() and store() methods that save the class data. If
it’s a structure, we will need code to save the members.

l Some programmers omit PD altogether. They just use OD and save what they know they would have needed
for that frame.

l The GD, PD and OD sections must be present or they may not execute.

In OD, we can create our own copy of the static so we can make changes. In the code below, we create a new
copy of the static, call GD to get the data from abStatic into old and then put it back. Of course, in between, we can

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 143

do whatever we like. We could, for instance, selectively remove elements that we know we didn’t need from a
list. We could empty out strings that we didn’t need.

CDecoderStaticusb_setup old("");
old._ReadDataFromAByteArray(abStatic); // move from abStatic to old

// throw away stuff I don’t want

old._PutDataInAByteArray(abStatic); // move from old to abStatic

9.8.6 Some Techniques
l Let’s say that we have three variables A, B and C. A and C we will always save but B only part of the time. We

would save A & C and then conditionally save B. In GD, we would ask for A, C and then B. B might not be there
and there is no problem. We can also create and save flags that tell us whether something else was saved. GD
is going to have to know whether to request data.

We can’t save more than 32,000 bytes.
if (m_abMyString.GetSize() < 32000)

ss.Store(m_ abMyString);
else
{

Abyte abTruncatedString;
abTruncatedString.Append(m_ abMyString);
abTruncatedString.SetSize(32000);
ss.Store(abTruncatedString);

}

l Saving an array of ints or pretty much anything else (CList, CMap): We must first save the size of the array.
Then using that size, we must traverse the array and save each value. In GD, we get the array size and we know
how many ints to get. With CMap, we would traverse the map, saving our key and then our value.

Some real world examples:

No cheat sheet would be worth anything without something from which to cheat. Offered below are some
examples that can be lifted into a static. In each case, we show three sections: Declaration, GD, and PD. OD is up to
the programmer.

9.8.6.1 An Array of ints

Declaration:
Int MyArray[50];
Int MyArraySize; // number of items I happen to be storing

PD:
ss.Store(MyArraySize);

for(Indx = 0; Indx < MyArraySize; Indx++)
ss.Store(MyArray [Indx]);

ss.RetrieveStream(abStatic); // move data from ss to abstatic

GD:
CStaticStorage ss(abStatic); // get data from abStatic
ss.Get(MyArraySize);

for(Indx = 0; Indx < MyArraySize; Indx++)
ss.Get(nMyArray [Indx]);

TELEDYNE LECROY Chapter 9 Decoder Data Objects

144 DecoderScript ReferenceManual and User Guide

9.8.6.2 CList
Here, we have a list of classes. In this case, the appropriate thing to do is put the Get/Store code in the class itself.
If a change must be made to the class, the Get/Store code will be at hand and no one will forget. We must still
traverse the list but for each item, there is only the call to the Get or Store method in the class. Notice that we are
clearing out the list before loading. Remember that the static is persistent so the list will be persistent. If we simply
add data to the list with each execution of GD, the list will get very, very long. Admittedly, clearing out the list is a
bit crude but it does guarantee that what is in the list is only what came from the FRM file.

Declaration:
Class FieldData
{

Public:
Int Var1;
Int Var2;
void Store(CStaticStorage &ss)
{

ss.Store(Var1);
ss.Store(Var2);

};
void Get(CStaticStorage &ss)
{

ss.Get(Var1);
ss.Get(Var2);

};
};

CList<CFieldData, CFieldData&> MyList;

PD:
FieldData FldData;
ListSize = MyList.GetSize();
ss.Store(ListSize);
pos = MyList.GetHeadPosition();
while(pos)
{

FldData = MyList.GetNext(pos);
FldData.Store(ss);

}
ss.RetrieveStream(abStatic); // move data from ss to abstatic
GD:
CStaticStorage ss(abStatic); // get data from abStatic
FieldData FldData;
MyList.RemoveAll();
ss.Get(ListSize);
for(Indx = 0; Indx < ListSize; Indx++)
{

FldData.Get(ss);
MyList.AddTail(CFieldData(FldData.Var1, FldData.Var2));

}

Chapter 9 Decoder Data Objects TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 145

9.8.6.3 CMap
For this example, we use the class above but we put it in a CMap. The Key field is an int. This is much like the code
for the CList.

Declaration:
CMap<int, const int&, FieldData, FieldData &> MyMap;

PD:
FieldData FldData;
int Key;
int MapSize;
POSITION pos;

MapSize = MyMap.GetSize();
ss.Store(MapSize);
pos = MyMap.GetStartPosition();
while (pos != NULL)
{

MyMap.GetNextAssoc(pos, Key, FldData);
ss.Store(Key);
FldData.Store(ss);

}
ss.RetrieveStream(abStatic); // move data from ss to abstatic

GD:
CStaticStorage ss(abStatic); // get data from abStatic
FieldData FldData;
int Key;
int MapSize;
int Indx;
MyMap.RemoveAll();
ss.Get(MapSize);
for(Indx = 0; Indx < MapSize; Indx ++)
{

ss.Get(Key);
FldData.Get(ss);
MyMap[Key] = FieldData (FldData.Var1, FldData.Var2);

}

TELEDYNE LECROY Chapter 9 Decoder Data Objects

146 DecoderScript ReferenceManual and User Guide

Chapter 10 Tips and Tricks
In this chapter we have a potpourri of tips, tricks, caveats and loose ends pertaining to decoders.

10.1 Approach to Decoding a Field
Start by considering the size. If the size is not fixed then review the standard Size Methods to see if one will work.
Remember that the FromField method allows you to pick up the size from another field including possibly a
variable; this offers deep flexibility in calculating field sizes. If you still cannot obtain the required size then you will
need to write your own custom Size Method.

Second, consider the value. Given that you have the size, can the data just be pulled out of the layer data? If it
cannot then you need to use a Retrieval Method. Again consider the standard set before deciding that you need to
write your own.

Only at this point should you consider formatting and verification. Be particularly careful when formatting numeric
values that can be negative.

10.2 Empty Frames
There are protocols in which an empty frame has a significance. If you are working with such a protocol then you
might be tempted to include a conditional statement in your decoder to detect such a frame and display some
relevant information for it. You would find however that the statement appears never to work. The reason is that
empty frames are completely skipped in the decoding process

10.3 Red Items in the Summary Pane
When something is displayed in red in a decode Summary Pane, it is for one of three reasons:

l A VERIFY failure has occurred in the decoder.

l A hardware error occurred. (Look at the Event Display window for details.)

l The decoder did not terminate at the end of the layer. If it terminated prior to the end then the non-decoded
fields will show up in red in the Decode Pane.

DecoderScript ReferenceManual and User Guide 147

10.4 How Field Values are Stored
Each FIELD (or GROUP FIELD) statement is compiled into a table that includes a 64-bit space for holding a field
value. For any field that has a size of 64 or fewer bits, the field value is stored in this space. Note that, since no
intrinsic numeric representation is specified for a value, no sign extension is performed when a value that is
narrower than 64 bits is stored. Suppose, for example, that you have a FIELD statement for a 16-bit field defined
by the protocol as containing a signed integer in twos complement notation. Then an instance of this field that
contains -1 would have its value stored as (in hex) 0000FFFF not FFFFFFFF. The way around this is to use the
SignExtension method in a RETRIEVE clause.

When a field wider than 64 bits, its value is not extracted. Any method that needs to process the value must read
it directly from the raw layer data (the abytLayer array). This is how all the StringOfXxx FormatMethods work

Knowledge of how values are stored may help you in understanding certain intricacies of the protocol analyzer. It
will give additional insight as to why some format methods (Decimal, Hex, etc.) do not work appropriately for
fields greater than 64 bits. Also it should be clear that if a FIELD is decoded more than once, say in a GROUP
REPEAT, then each retrieved value for the field overwrites the previous one.

10.5 A Subtle Difference Between GROUP and GROUP FIELD
There is one subtle difference between a GROUP and a GROUP FIELD that you may want to keep in mind. When a
group in the Decode Pane is selected, the complete range of bits or bytes that comprise the group in the Binary,
Radix and Character Panes is selected. By contrast, when you select a group field, only the bits or bytes that
comprise the field are highlighted. To a user viewing the Decode Pane, however, a group and a group field look
very similar. In fact the following would look identical except for the highlighted bytes.

GROUP FIELD grp_fld (Fixed 0 Bits) (Constant "X") "Data"
GROUP grp "Data: X"

The lesson to be learned here is that it is a good idea to maintain a clear distinction between groups and group
fields by displaying some "real" formatted data for a group field and avoiding colons in group tags. This is an
unlikely lesson because it is unlikely that you would find reason to use GROUP FIELD and GROUP in a confusing
way to start with (unless you happen to use GROUP FIELD where GROUP is more appropriate).

10.6 Large Fields
Suppose you want to write a decoder for a protocol that has fields that can be very large. Any email protocol
(POP, SMTP, IMAP, X.400) would serve as a good example; one of these may carry an entire email message as a
data field possibly running to several megabytes. Fields of such a size can be managed, but it is hardly practical to
display the entire contents in the Frame Display window. The conventional thing to do is to display just the first
128 characters in the Decode Pane; if the user needs to see more he can select the field in the Decode Pane and
then open the Event Display window that will come up showing the same data. The SMTP decoder (SMTP.DEC)
serves as a good case study of working with such a protocol.

10.7 Error Correcting in GROUP REPEAT Constructions
Sometimes with a repeating group, you know what the size of a single iteration is because there is a length
embedded in the data. The data that follows could be of a number of types, including some types that you may not
be aware of when you write the decoder. It would be nice to be sure that the decoder does not get misaligned
with the data if something unexpected happens. This can be handled in the following way:

GROUP object REPEAT SIZE (ToEndOfLayer)

TELEDYNE LECROY Chapter 10 Tips and Tricks

148 DecoderScript ReferenceManual and User Guide

{
FIELD type (Fixed 1) (FromTable obj_table object) "Type"
FIELD length (Fixed 1) (Decimal) "Length"
BRANCH (FromTable obj_table object)
FIELD move_to_next START_BIT (MoveRelativeFromField length 1) (Fixed 0) (Hex) SUPPRESS_

DETAIL
}

Note the last field, that just moves the pointer to the start of the next iteration. Even if there is an error in the
decode, or an error in the frame, or there is a new object type defined since the decoder was written, still each
group begins at the correct place.

10.8 How to Implement a Repeating Counter
Sometimes it is nice to know which iteration of a repeating group the decoder is currently executing. This can be
done in the following way:

FIELD rep_count (Fixed 1) (Decimal) "Number of repeats"
FIELD zero_counter ;
GROUP rep REPEAT COUNT (FromField Times rep_count)
{

FIELD print_counter (Fixed 0) RETRIEVE (StoreField counter) (decimal) "Counter"
FIELD increment_counter ;

}
END_MAIN_PATH
/* Add one to the count for the next iteration */
FIELD increment_counter (Fixed 0) RETRIEVE (StoreField counter) (Hex) SUPPRESS_DETAIL

STORE counter RETRIEVE (AddInteger 1)

/* Initialize the counter to zero */
FIELD zero_counter (Fixed 0) (Hex) SUPPRESS_DETAIL STORE counter RETRIEVE (StoreInteger 0)

Output for a frame that begins with the byte 0x03:

Number of repeats: 3

Counter: 0

Counter: 1

Counter:2

An important point is that the increment_counter field MUST have SUPPRESS_DETAIL and not have IN_
SUMMARY. Otherwise, the field is encountered twice and the count increases by two.

10.9 Recalcitrant Summary Columns
You may change the widths of the Summary-Pane columns defined in your decoder and then observe that your
changes appear to have no effect on the display. If this happens it is most likely because your column-display data
have been stored in an INI file, and override what is in the decoder. Fixing the problem is an easy matter of editing
the <My Product>.INI file (which you should find in your main installation directory). Find the section named
"SummaryColumnWidths" then the entry named "Decoder <YourProtocol>", and delete the entry.

To explain this phenomenon more fully, what actually happens is the protocol analyzer uses the column widths
defined in the decoder as initial defaults. Any time the user adjusts a column width manually then that selection
takes precedence. The user can reset to the defaults at any time by selecting Reset to Default Widths from the
Summary menu on the Frame Display window.

Chapter 10 Tips and Tricks TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 149

10.10 Overwriting Summay-Pane Column Entries
Consider the following statements designed to decode an FP Set Actuator command in a rather fancier way than
we did in the tutorial chapter:

GROUP cmdSetActuator
{

FIELD actuator_number (Fixed 1 Byte) (Decimal)
"Actuator Number" VERIFY (FieldIsBetween 1 32)

FIELD rpt_actnum START_BIT (Move -1 Byte) (Fixed 1 Byte)
(Constant "Set Actuator") ALSO (Decimal)
IN_SUMMARY "Command/Response" 0 SUPPRESS_DETAIL

FIELD actuator_value ;
}

The first two FIELD statements decode the actuator-number field twice. This might seem odd at first but can prove
very handy. Specifically the first one decodes it for display in the Decode Pane and the second adds it to the
display in the Summary Pane. You may find many other clever reasons to repeat a decode in this kind of way.

Note that the second statement includes a StartBit clause that moves the pointer backwards by one byte to the
actuator-number field. The first format method produces a constant string "Set Actuator". The second format
method formats the actuator number in decimal creating a combined result of, for example, "Set Actuator 3". This
is then inserted into the Command/Response column in the Summary Pane. Note that this column will already
have an entry that has been generated by the command_code FIELD. Here we are sneakily overwriting that field
to add some more information to it. Finally we see the keyword SUPPRESS_DETAIL. That means nothing should be
displayed in the Decode Pane - which is exactly what we want because the previous statement produced the
appropriate entry for that.

Two more notes about this pair of FIELDs. First, the second FIELD could be removed and the decoder would work
perfectly well, just with slightly less information appearing in the Summary Pane. Second, when we decode the
field the second time we are obliged to give it a new name.

10.11 Readable Protocols
Is there much point in writing a decoder for a protocol that is very readable in the first place? An example of a
readable protocol would be SMTP or IMAP where commands are English words and data is mostly text (i.e. email
messages or fragments thereof). The need is certainly not so critical as with a protocol such as PPP or X.25 but the
answer is nevertheless a definite yes.

With an unreadable protocol, emphasis is placed on the decode pane to view what is going on. Readable protocols
rely more on the summary pane. The summary pane gives a comprehensive view of what is taking place in a
session. You can filter frames based on type, watch the delays between commands and responses and quickly
spot faults by scanning for entries displayed in red.

10.12 Using Variables
Variables are only intended for use in odd situations. An example is where the length of a string is given
sometimes as a byte and sometimes as a word. Do not create variables just because you want to reference field
values while processing other fields; in most cases you can just refer directly to the field name for this purpose.

TELEDYNE LECROY Chapter 10 Tips and Tricks

150 DecoderScript ReferenceManual and User Guide

Be careful to avoid any possibility of referencing a variable before it is defined, especially in a case where there
are multiple paths through your decoder each of which is supposed to store a particular variable whose value is
then used at the end. One technique that may help in this regard is to initialize variables at the start of the
executable section of the decoder. This also serves as an excellent opportunity to document them, as in:

/*
** The variable string_len is set to the length of the
** varialbe string if one exists. If there is no such
** string then its value will be left at minus one as
** set here.
*/
FIELD init_var_string_len (Fixed 0) STORE string_len RETRIEVE (StoreInteger ‐1) (Decimal)

SUPPRESS_DETAIL

Note that you can use similar means to perform arithmetic operations on variables. Consider, for example:

FIELD arithmetic_1 (Fixed 0) STORE var1 RETRIEVE (StoreField var1) ALSO (MultiplyField var2)
ALSO (SubtractInteger 1) (Decimal) SUPPRESS_DETAIL

This multiplies variable var1 by variable var2, subtracts one from that, and then stores the result back into var1.
Sure, it would be easier if one could write, say:

var1 = var1 * var2 - 1

But it may only be one decoder in fifty that needs to do arithmetic on variables in the first place.

You can even display the value of a variable in the decode pane, as with the statement:

FIELD display_var1 (Fixed 0) RETRIEVE (StoreField var1) (Decimal) "Variable var1"

10.13 Storing Data
Three facilities are provided for managing data such that it can be saved during one method invocation and
retrieved during another:

1. DecoderScript variables are really just a special case of fields that allow you to store pieces of data of up to
64 bits in size. The unique value of such variables is that they can be referred to in DecoderScript
statements and passed to methods. Their scope is limited to the decoding of one particular protocol layer.

2. Standard C++ module-level variables allow you to store arbitrary data between calls to methods that reside
in the same DLL. The scope of such variables is at least the decoding of one instance of a layer. We
mention this because it is something a programmer might think of doing. We consider the safety of this to
be questionable, and do not recommend its use. The problem is that there is no guarantee about the order
in which methods will be called. It may vary from release to release, or on how the user manipulates the
Frame Display, or several other factors.

3. If you need to store any data that must persist beyond these boundaries then you must use a Decoder Data
Object. Decoder Data Objects endure for an entire analysis session.

10.14 Storing Data Into Decoder Data Objects
There are two ways to save field values into Decoder Data Objects. One is with a PostProcessing Method, and the
other is to use a custom Retrieval Method. Note that you are not obliged to set either output of a Retrieval
Method (i64FieldValue or iFieldSize); these are preset with the existing values when the method is called. Using a

Chapter 10 Tips and Tricks TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 151

Retrieval Method to store data would be preferable in various circumstances, for example when a field is
repeated and each instance of the value needs to be saved.

10.15 Adding on to Frontline Decoders
In some cases, you may wish to utilize the power of Frontline`s existing decoders but with some modifications or
additions of your own. In order to meet this need, you may either modify or add on to existing tables within
Frontline`s decoders. Before undertaking such an endeavor, we strongly suggest that you contact Frontline
technical support for feasibility and proper syntax. Decoderscript provides two separate keywords to append
and/or overwrite tables that exist in the Frontline decoders: APPENDS_ONLY and APPENDS_AND_OVERWRITES.
In order to work properly, these must go into a file named “Custom Attributes <affected protocol/profile>.dh,”
and this file needs to go into your “My Decoders” directory.

Consider the case in which you wish to add a new PSM to the L2CAP decoder for your own proprietary protocol.
In your “My Decoders” directory you would need a file named “Custom Attributes L2CAP.dh,” and within your file
the syntax for adding your PSM to Frontline`s table would be as follows:

TABLE myTable APPENDS_ONLY psms
{0x0020 “My Protocol” “MP” 0 myMethod}
{0x0021 “My Protocol1” }

ENDTABLE

GROUP myMethod
{

FIELD myField (Fixed 1 byte)…
…

}

Please note that in the case of table branching above, you must have a Group or Field named myMethod defined
in your .dh file as you would normally with any branching statements from a table; however, unlike a normal
decoder file, your custom attributes file does not need any additional syntax such as decoder id, DECODE and
END_MAIN_PATH statements, or any other control statements. All that are necessary are TABLE with APPEND or
APPEND_AND_OVERWRITE statements and any necessary field or group statements.

Assuming that you have decoders, decoder ids, and personality rules for your two protocols above as described in
Chapter 4: Putting It All Together, the table append shown above will now cause the protocol stack to
automatically traverse to your protocols and use your custom decoders when relevant. However, this will only
append unique entries to an existing table. If you attempt to append a table entry with a duplicate value to an
existing table, the CPAS software will notify you that your table entry will be ignored.

In some cases, you may wish to overwrite some of Frontline`s existing table entries. Take for example the Low
Energy ATT decoder -- in Frontline`s table for GATT_UUIDs (GATT_UUIDS.tbl) , there exists the following table
entry:

{ 0x2A19 "Battery Level" "Battery Level" 0 BatteryCharacteristic}

This table entry then branches to the group BatteryCharacteristic which simply decodes the byte value to a
decimal value between 0 and 100 per the spec. Suppose, however, that you want to throw an error when the
battery level drops below 25 as well as retrieving some other stored value at this time. Your syntax would look like
this:

TABLE myTable APPENDS_AND_OVERWRITES GATT_UUIDs
{ 0x2A19 "My Battery Level" "My Battery Level" 0 MyBatteryCharacteristic}
ENDTABLE

TELEDYNE LECROY Chapter 10 Tips and Tricks

152 DecoderScript ReferenceManual and User Guide

GROUP MyBatteryCharacteristic
{

FIELD myblPercent (Fixed 1) (decimal) "Battery Level" VERIFY (FieldIs GreaterThan 25) NO_MOVE
FIELD someField (Fixed 0) RETRIEVE (IntraFrameField somefield) (Decimal) “Some field” NO_

MOVE
}

You may notice that the original table name is GATT_UUIDS.tbl, but the table being modified here is GATT_UUIDs
and not GATT_UUIDS.tbl. Why is that? Because within the ATT decoder, there is a table named GATT_UUIDs that
contains all the values in GATT_UUIDS.tbl and is what the decoder actually uses when decoding. Another reason is
scope – if you modify the original GATT_UUIDS.tbl file and not the local copy, then every decoder that uses this
file will be affected by your change, not just the decoder that you want affected. Because of this syntax sensitivity,
it is mandatory to contact Frontline technical support in order to obtain the proper table name to overwrite or
append to.

Please note in the above example that there is a new, unique group name and field name for battery
characteristics. Any field or group name in your custom attributes file that is also in Frontline`s existing decoder
will cause decoder loading errors, in which case you simply need to rename your group or field in question and
reload the decoders.

Special caution should be taken when overwriting table entries. In the above example, if there are any groups or
fields in the Frontline decoder that rely upon the BatteryCharacteristics group, they will decode improperly
because that group will no longer contain the correct value since it was overrwitten and your new field holds the
actual battery level value. For this reason, you should only use APPENDS _AND_OVERWRITES when you are sure it
does not affect further decoding. One good way to ensure that it does not affect further decoding is by adding the
original branching group or field into your new branching group. Following the above example, our original table
entry branched to a group or field named ‘BatteryCharacteristic’ You will need to find out from Frontline if the
original branch was to a group or field (let`s say it was a group), and then you just add it to your new branch like
such:

GROUP MyBatteryCharacteristic
{

GROUP BatteryCharacteristic; //this was the original branch
FIELD myblPercent (Fixed 1) (decimal) "Battery Level" VERIFY (FieldIs GreaterThan 25) NO_MOVE
FIELD someOtherField START_BIT (Move 8 bits) (Fixed 1) (decimal) “Some other field” NO_MOVE
FIELD someField (Fixed 0) RETRIEVE (IntraFrameField somefield) (Decimal) “Some field” NO_

MOVE
}

You will notice that all your fields in your new branching group have the NO_MOVE keyword at the end. It is a
very good idea to include that keyword to the end of every field when appending and overwriting so that you do
not change the bit pointer for future fields that Frontline`s decoder looks at.

The following is a list of protocols which you can add custom attributes to, and the name which you must have for
your custom attributes file (in your My Decoders directory):

Protocol Required Custom Attributes File name 1

802.11MAC Custom Attributes 802.11MAC.dh

802.11 Radio Custom Attributes 802.11 Radio.dh

PPP Custom Attributes PPP.dh

Table 10.1 - Protocols That Accept Custom Attributes

Chapter 10 Tips and Tricks TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 153

Protocol Required Custom Attributes File name 1

Async PPP Custom Attributes ASYNCPPP.dh

Bluetooth® L2CAP Custom Attributes L2CAP.dh

Bluetooth LMP Custom Attributes LMP.dh

BluetoothRFCOMM Custom Attributes RFCOMM.dh

BluetoothSDP Custom Attributes SDP.dh

Ethernet Custom Attributes ethernet.dh

IP Custom Attributes IP.dh

IPv6 Custom Attributes IPv6.dh

LE ATT Custom Attributes ATT.dh

LE SMP Custom Attributes SMP.dh

IEEE_P11073MDP Custom Attributes MDP.dh

USB Setup Custom Attributes USB setup.dh

USB Custom Attributes USB.dh

BluetoothSSP Start_Main_Path_BT_SSP.dh 2

802.11 Radio EndMain Path 802.11 Radio.dh 3

1. Decoders are always being added so it is recommended that you contact Frontline Technical Support for information on the latest
decoders: Phone: (434) 984-4500or Email: tech_support@fte.com

2. Will be included before any decoding begins. By setting a variable you can cause SSP.dec not to decode anything but instead traverse to
another decoder.

3. Will be included as the very last thing the decoder does before End_Main_Path which means that the included codewill be the last thing
that is run by the the decoder.

Table 10.1 - Protocols That Accept Custom Attributes(continued)

10.16 Decoder Event Logging
The Frontline decoders collect a lot of meta-information. In Bluetooth, all sorts of information is collected along
the way about connections, device identification and the data being passed back and forth. This information aids
ComProbe software in decoding the data carried in later frames.

But some of that data is useful to see. On an ad hoc basis, some Frontline decoders can expose meta-information
through the use of event logging. This topic will describe how to enable event logging and how to read the results.
The ATT decoder will be used as an example.

Note: Enabling event logging involves physical disk writes. Event logging during a live capture
will affect performance. Perform live captures with Event logging off. Then open the capture
file and recreate companion files to see a log.

Enabling Event Logging

For this example we will use an ini file for handling 128-bit UUIDs: ATT_CustomLongUUIDs.ini. This decoder may
exist in your My Decoders directory (C:Users/Public/Public Documents/Frontline/My Decoders/). If the file is not

TELEDYNE LECROY Chapter 10 Tips and Tricks

154 DecoderScript ReferenceManual and User Guide

in your My Decoders directory, see Handling 128-bit UUIDs on page 274 for instructions on building this file.

1. Load ATT_CustomLongUUIDs.ini into a text editor.

2. Add a new section to the end of the file:

[DEBUG]
ATT_LOG_LongUUID = 1
ATT_LOG_Mappings = 1
ATT_DUMP_Mappings = 1

3. Save the .ini file to your My Decoders directory.

Important notes:

l The .ini file must reside in the root of your My Decoders directory.

l The .ini file is loaded exactly once when the ComProbe software is run.

o Reloading the decoders will not reload this file.

o Recreating companion files will not reload this file.

What you get from event logging

In the code above, setting the values to "1" will enable the log. Setting the value to "0", commenting the code out
with a semi-colon, or deleting the line will disable logging. The default condition of these values is "0".

The code will provide the following information to the log:

Code Log Description
ATT_LOG_LongUUID Logging of themapping of Long (128 bit) UUIDs to

arbitrary 32 bit numbers.

ATT_LOG_Mappings LogMapping events. These events occur only when
a new item is discovered and themapping database
changes.

ATT_DUMP_Mappings 3. Log Dump. Every time themapping database is
accessed, the entire contents are dumped to the
event log.

Table 10.2 - Event Logging Results

Reading the result

Long UUID events: Consider the following two events.

Event 1: Frame 0 Mapping UUID: b8d02d816329ef968a4d55b376d8b25a = 0x7f000001
Event 2: Frame 0 Mapping UUID: 5a50528de5ba462090ac33e5b913684c = 0x7f000002

In event 1, CPAS has loaded a mapping for a 128 bit UUID and it maps to 0x7f000001.

Event 124: Frame 76 mapping UUID 7f000001 to handle 73
Event 125: Frame 76 Mappings list: 1 items
Event 126: Frame 76 dc3df4b4:1,73,7f000001

Chapter 10 Tips and Tricks TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 155

In event 124, we see that handle 73 has been mapped to 0x7f000001. That means that when we receive a
transaction (read or write) for handle 73, we can map it all the way back to UUID
b8d02d816329ef968a4d55b376d8b25a and the decoder will know what to do.

In event 125, still at frame 76, we see a full dump of our mappings database. We see that for AccessID, side 1
(Advertiser/Peripheral), there is a link between handle 73 and UUID 0x7f000001.

Events 1 and 2 were created as a result of ATT_LOG_LongUUID = 1.

Event 124 was created as a result of ATT_LOG_Mappings = 1.

Events 125 and 126 were created as a result of ATT_DUMP_Mappings = 1.

10.16.1 Handling 128-bit UUIDs
In ATT, UUIDs come in two sizes: 16 bit and 128 bit. The Bluetooth® SIG uses a ‘Base UUID’.

0000xxxx-0000-1000-8000-00805F9B34FB

The only part that changes is the second double-word where the xxxx as shown above. Generally the SIG adopted
profiles transmit only 16 bit UUIDs. Default processing in ComProbe software is to extract 16 bits from any 128 bit
UUID and match to the GATT_UUIDs table.

If your 128 bit UUIDs are unique in those 16 bits, you can just extract those bits and enter them as above. But
there is some risk to that. If the SIG uses your 16 bit value, you will have a conflict with the SIG. If your UUIDs don’t
differ in those 16 bits, you have an internal conflict. DecoderScript cannot perform logic on any value larger than
64 bits so simply entering the full UUID is not possible. Trying to do two 64 bit comparisons is unworkable.

Fortunately, Frontline has a solution.

1. Create a text file in your ‘My Decoders’ directory and name it “ATT_Custom_LongUUIDs.ini”. It MUST be in
the‘My Decoders̕ directory and the name MUSTmatch. The content of that file should look like this:

[Long UUIDs]
; HELLO BLUETOOTH
b8d02d81-6329-ef96-8a4d-55b376d8b25a = 0x7f000001 // Service
5a50528d-e5ba-4620-90ac-33e5b913684c = 0x7f000002 // Characteristic Use Name

There must be a section called [Long UUIDs].

The first field is the long UUID.

l You may enter the bytes as transmitted or in reverse order.

l You may include dashes.

l You can use the // comment

l Lines beginning with ";" are ignored.

The second field is one you choose. This is the number you will add to GATT_UUIDs.

l Make your number greater than 16 bits (4 hex digits). This ensures that your value cannot conflict with
SIG UUIDs.

l No negative numbers. Note the 0x7F in the code above. That puts a "0" in the high bit and ensures a
positive number.

2. When you have created ATT_Custom_LongUUIDs.ini, you are ready to use your numbers in GATT_UUIDs.

TELEDYNE LECROY Chapter 10 Tips and Tricks

156 DecoderScript ReferenceManual and User Guide

Note that the 0x7f000001 in GATT_UUIDs corresponds to the mapping in the ATT_Custom_LongUUIDs.ini

TABLE tMyTable APPENDS_AND_OVERWRITES GATT_UUIDs
// Hello Bluetooth Service
{ 0x7f000001 "Hello Bluetooth" }
{ 0x7f000002 "User Name" "User Name" 0 chHelloBT_UserName }
ENDTABLE

Walking through what happens: When we receive a long UUID, we check the LongUUID table first. We check for
the UUID both in transmitted order and reverse order. If there is a mapping to a 32 bit number, we use it. If there
is no mapping, we extract the second doubleword and use that.

Chapter 10 Tips and Tricks TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 157

158 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 10 Tips and Tricks

Chapter 11 One Complete Example
Here we present the decoder for IP version 4 with added commentary to explain what is going on.

Note that the DecoderScript here is not written totally in line with the recommendations given in this manual.
Many single-word field tags, for example, are written without enclosing quotes. This may serve a useful purpose in
reminding you that many of our recommendations are just that and not hard-and-fast rules.

/* Internet Protocol version 4. Copyright 2016 Teledyne LeCroy, Inc. All rights reserved. */
IPv4 0x7f000401

/*
** This identifies the next protocol.
*/
NEXT_PROTOCOL (FromField protocol)
/*
** The length for the next protocol is calculated as the
** length of the entire IP packet (decoded as the field
** named tot_length) minus the length of
** the IP header.
*/
NEXT_PROTOCOL_SIZE (ThisLayerLength tot_length)

/*
** This is a custom method to handle fragmentation.
*/
FRAME_AFTER_DECODING (IpReconstructFragments a)

DECODE

/*
** This table is indexed by the IP version number. It
** identifies certain IP variants such as TUBA (TCP and UDP
** with Bigger Addresses). Full decoding of these variants
** is not supported. Basically version 4 is expected.
*/
TABLE ver_nums

{ 0 "Reserved"}

DecoderScript ReferenceManual and User Guide 159

{ 4 "Internet Protocol ver. 4"}
{ 5 "ST" "ST Datagram Mode"}
{ 6 "SIP" "Simple Internet Protocol"}
{ 7 "TP/IX" "The Next Internet"}
{ 8 "PIP" "P Internet Protocol"}
{ 9 "TUBA"}
{ DEFAULT "Unassigned"}

ENDTABLE

/*
** This table lists the precedence levels defined for IP.
** The precedence is given by a three-bit field within
** the Type-of-service byte.
*/
TABLE prec

{ 7 "Network Control"}
{ 6 "Internetwork Control"}
{ 5 "CRITIC / ECP"}
{ 4 "Flash Override"}
{ 3 "Flash"}
{ 2 "Immediate"}
{ 1 "Priority"}
{ 0 "Routine"}

ENDTABLE

/*
** The table lists the options specified by the Delay
** bit in the Type-of-service byte.
*/
TABLE delay

{ 0 Normal }
{ 1 Low }

ENDTABLE

/*
** The table lists a pair of options that pertain to both
** the Throughput and the Reliability bit flags in the
** Type-of-service byte.
*/
TABLE norm_hi

{ 0 Normal }
{ 1 High }

ENDTABLE

/*
** The table lists the options specified by the
** may/don't fragment bit in the Flags field.
*/
TABLE df

{ 0 "May Fragment"}
{ 1 "Do not Fragment"}

ENDTABLE

/*
** The table lists the options specified by the
** last/more fragment(s) bit in the Flags field.

TELEDYNE LECROY Chapter 11 One Complete Example

160 DecoderScript ReferenceManual and User Guide

*/
TABLE mf

{ 0 "Last Fragment"}
{ 1 "More Fragments"}

ENDTABLE

/*
** This table lists the next-layer protocol codes.
** Apart from ICMP, GGP, TCP, EGP, IGP and UDP,
** most of these are rarely encountered.
*/
TABLE protocol

{ 0 "IPv6 Hop-by-Hop Option"}
{ 1 "ICMP" "Internet Control Message Protocol"}
{ 2 "IGMP" "Internet Group Management Protocol"}
{ 3 "GGP" "Gateway-to-Gateway Protocol"}
{ 4 "IP in IP (encapsulation)"}
{ 5 "Streaming protocol"}
{ 6 "TCP" "Transmission Control Protocol"}
{ 7 "CBT"}
{ 8 "EGP" "Exterior Gateway Protocol"}
{ 9 "IGP" "Interior Gateway Protocol"}
{ 10 "BBN RCC Monitoring"}
{ 11 "NVP" "Network Voice Protocol"}
{ 12 "PUP"}
{ 13 "ARGUS"}
{ 14 "EMCON"}
{ 15 "Cross Net Debugger"}
{ 16 "Chaos"}
{ 17 "UDP" "User Datagram Protocol"}
{ 18 "Multiplexing"}
{ 19 "DCN Measurement Subsystems"}
{ 20 "HMP" "Host Monitoring Protocol"}
{ 21 "Packet Radio Measurement"}
{ 22 "XEROX NS IDP"}
{ 23 "TRUNK-1"}
{ 24 "TRUNK-2"}
{ 25 "LEAF-1"}
{ 26 "LEAF-2"}
{ 27 "RDP" "Reliable Data Protocol"}
{ 28 "IRTP" "Internet Reliable Transaction"}
{ 29 "ISO Transport Protocol Class 4"}
{ 30 "Bulk Data Transfer Protocol"}
{ 31 "MFE Network Services Protocol"}
{ 32 "MERIT Internodal Protocol"}
{ 33 "SEP" "Sequential Exchange Protocol"}
{ 34 "3PC" "Third Party Connect"}
{ 35 "IDPR" "Inter-Domain Policy Routing Protocol"}
{ 36 "XTP"}
{ 37 "DDP" "Datagram Delivery Protocol"}
{ 38 "IDPR Control Message Transport Protocol"}
{ 39 "TP++ Transport Protocol"}
{ 40 "IL Transport Protocol"}
{ 41 "IP ver6" "Internet Protocol version 6"}
{ 42 "SDRP" "Source Demand Routing Protocol"}
{ 43 "Routing Header for IPv6"}

Chapter 11 One Complete Example TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 161

{ 44 "Fragment Header for IPv6"}
{ 45 "Inter-Domain Routing Protocol"}
{ 46 "Reservation Protocol"}
{ 47 "General Routing Encapsulation"}
{ 48 "Mobile Host Routing Protocol"}
{ 49 "BNA"}
{ 50 "Encap Security Payload for IPv6"}
{ 51 "Authentication Header for IPv6"}
{ 52 "Integrated Net Layer Security"}
{ 53 "IP with Encryption"}
{ 54 "NBMA Address Resolution Protocol"}
{ 55 "IP Mobility"}
{ 56 "Transport Layer Security Protocol"}
{ 57 "SKIP"}
{ 58 "ICMP for IP ver6"}
{ 59 "No Next Header for IP ver6"}
{ 60 "Destination Options for IP ver6"}
{ 61 "Any Host Internal Protocol"}
{ 62 "CFTP"}
{ 63 "any local network"}
{ 64 "SATNET and Backroom EXPAK"}
{ 65 "Kryptolan"}
{ 66 "MIT Remote Virtual Disk Protocol"}
{ 67 "Internet Pluribus Packet Core"}
{ 68 "any distributed file system"}
{ 69 "SATNET Monitoring"}
{ 70 "VISA Protocol"}
{ 71 "Internet Packet Core Utility"}
{ 72 "Computer Protocol Network Executive"}
{ 73 "Computer Protocol Heart Beat"}
{ 74 "Wang Span Network"}
{ 75 "Packet Video Protocol"}
{ 76 "Backroom SATNET Monitoring"}
{ 77 "SUN ND PROTOCOL"}
{ 78 "WIDEBAND Monitoring"}
{ 79 "WIDEBAND EXPAK"}
{ 80 "ISO IP" "ISO Internet Protocol"}
{ 81 "VMTP"}
{ 82 "SECURE-VMTP"}
{ 83 "VINES"}
{ 84 "TTP" }
{ 85 "NSFNET-IGP"}
{ 86 "Dissimilar Gateway Protocol"}
{ 87 "TCF"}
{ 88 "EIGRP"}
{ 89 "OSPF-IGP"}
{ 90 "Sprite RPC Protocol"}
{ 91 "Locus Address Resolution Protocol"}
{ 92 "Multicast Transport Protocol"}
{ 93 "AX.25 Frames"}
{ 94 "IP-within-IP Encapsulation Protocol"}
{ 95 "Mobile Internetworking Control Protocol"}
{ 96 "Semaphore Communications Sec. Protocol"}
{ 97 "Ethernet-within-IP Encapsulation"}
{ 98 "Encapsulation Header"}
{ 99 "Any private encryption scheme"}

TELEDYNE LECROY Chapter 11 One Complete Example

162 DecoderScript ReferenceManual and User Guide

{ 100 "GMTP"}
{ 101 "Ipsilon Flow Management Protocol"}
{ 102 "PNNI over IP"}
{ 103 "PIM" "Protocol Independent Multicast"}
{ 104 "ARIS"}
{ 105 "SCPS"}
{ 106 "ONX"}
{ 107 "Active Networks"}
{ 108 "IP Payload Compression Protocol"}
{ 109 "Sitara Networks Protocol"}
{ 110 "Compaq Peer Protocol"}
{ 111 "IPX in IP"}
{ 112 "Virtual Router Redundancy Protocol"}
{ 113 "PGM Reliable Transport Protocol"}
{ 114 "0-hop" "Any 0-hop protocol"}
{ 255 Reserved }
{ Default "???" "Protocol Not Found"}

ENDTABLE

/*
** This table lists codes for the IP options that may
** follow the main IP header. Note that this table
** contains names of statements for processing each
** option.
*/
TABLE ip_options

{ 0 "End of List"}
{ 1 "No Operation"}
{ 7 "" "Record Route" 1 misc_pointer}
{ 10 "" "Experimental Measurement" 1 misc_opt}
{ 11 "" "MTU Probe" 1 misc_opt}
{ 12 "" "MTU Reply" 1 misc_opt}
{ 15 "" ENCODE 1 misc_opt}
{ 68 "" "Time Stamp" 1 ts}
{ 82 "" Traceroute 1 misc_opt}
{ 130 "" Security 1 security }
{ 131 "" "Loose Source Route" 1 misc_pointer}
{ 133 "Extended Security"}
{ 134 "Commercial Security"}
{ 136 "Stream ID"}
{ 137 "Strict Source Route"}
{ 142 "Expermental Access Control"}
{ 144 "IMI Traffic Descriptor"}
{ 145 "EIP" }
{ 147 "Address Extension"}
{ 148 "" "Router Alert" 1 rtr_opt}
{ 149 "Selective Directed Broadcast"}
{ 150 "NSAP Addresses"}
{ 205 "Experimental Flow Control"}
{ Default "Unknown IP Option"}

ENDTABLE

/*
** This table lists security levels. This is used
** when processing the Security option.
*/

Chapter 11 One Complete Example TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 163

TABLE sec_TABLE
{ 0x00000001 "Reserved 4"}
{ 0x0000003d "Top Secret"}
{ 0x0000005a "Secret"}
{ 0x00000096 "Confidential"}
{ 0x00000066 "Reserved 3"}
{ 0x000000cc "Reserved 2"}
{ 0x000000ab Unclassified }
{ 0x000000f1 "Reserved 1"}
{ Default "Unknown Security Classification"}

ENDTABLE

/*
** This table is used in processing the Router Alert
** option.
*/
TABLE rtr_options

{ 0x00000000 "Examine all packets"}
{ Default "Reserved"}

ENDTABLE

/*
** The IP header begins with a four-bit field that contains
** the protocol version number. If we find a version below
** 4 then we will have a failed VERIFY resulting in the frame
** being marked in red.
*/
FIELD version (Fixed 4 Bits) (TABLE ver_nums) "Version" VERIFY (FieldIs GreaterThanOrEqualTo 4)

/*
** The IHL field contains the IP Header Length as a count of
** 32-bit words. The base header consists of a fixed 5 such
** words, hence the check that this value is at least 5.
** Anything beyond 5 words comprises options.
*/
FIELD ihl (Fixed 4 Bits) (Decimal) IN_SUMMARY IHL 30 "Header Length" VERIFY (FieldIs

GreaterThanOrEqualTo 5) ALSO (IsNoMoreThanLayerInDwords)

/*
** Here we decode the Type Of Service byte. Note that this
** could have been done with a GROUP FIELD. For completeness
** we display the two reserved bits rather than covering them
** up with a RESERVED statement.
*/
GROUP tos "Type of Service"
{

FIELD preced (Fixed 3 Bits) (Binary) ALSO (Table prec)
Precedence
FIELD delay (Fixed 1 Bit) (Binary) ALSO (Table delay) Delay
FIELD thru (Fixed 1 Bit) (Binary) ALSO (Table norm_hi)
Throughput
FIELD reli (Fixed 1 Bit) (Binary) ALSO (Table norm_hi)
Reliability
FIELD reserv (Fixed 2 Bits) (Binary) Reserved

}

TELEDYNE LECROY Chapter 11 One Complete Example

164 DecoderScript ReferenceManual and User Guide

/*
** This field contains the length of the total IP packet in
** bytes including the IP header. Thus this is the length of
** the IP layer plus all subsequent layers.
*/
FIELD tot_length (Fixed 2 Byte) (Decimal) IN_SUMMARY Length 50
"Total Length"

/*
** The ID field contains the packet's serial number. This
** is used for reassembling fragmented packets.
*/
FIELD id (Fixed 2 Byte) (Hex) IN_SUMMARY ID 50 Identification

/*
** The Control Flags field contains one unused bit plus two
** bit flags:
** may/don't fragment
** last fragment/more fragments coming
*/
GROUP ctrl_flags "Control Flags"
{

FIELD reser (Fixed 1 Bit) (Binary) Reserved VERIFY
(FieldIs EqualTo 0)
FIELD df (Fixed 1 Bit) (Table df) DF
FIELD mf (Fixed 1 Bit) (Table mf) MF

}

/*
** For a fragment, this field contains the offset of its
** starting point within the full packet.
*/
FIELD offset (Fixed 13 Bits) (Decimal) "Fragment Offset"

/*
** The Time-To-Live field contains the number of seconds
** before a router should discard the packet.
*/
FIELD ttl (Fixed 1) (Decimal) IN_SUMMARY Time 40 "Time to live sec."

/*
** This field contains a code that identifies the next-layer
** protocol. Note that we verify that the code is present
** in our table of protocols.
*/
FIELD protocol (Fixed 1) (Table protocol) IN_SUMMARY Protocol 100
Protocol VERIFY (IsInTable protocol)
/*
** Next comes a 16-bit checksum on the header so far, that is
** 10 bytes worth.
*/
FIELD chksum (Fixed 2 Byte) (Hex) IN_SUMMARY Checksum 65 "Header
Checksum" VERIFY (IpChecksum ihl)

/*

Chapter 11 One Complete Example TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 165

** The source and destinations addresses of the packet are
** decoded here. These are formatted in dot-quad notation
** (e.g. "64.147.250.27"). Note that the addresses are stored
** in intra-frame (within the current frame only) data
** so that they can be used in the Summary pane for other protocols,
** such as HTTP.
*/
FIELD src_addr (Fixed 4 Byte) RETRIEVE (StoreIntraframeField source_ip_address) (IPAddress) IN_

SUMMARY Source 90 "Source Address"

FIELD dest_addr (Fixed 4 Byte) RETRIEVE (StoreIntraframeField destination_ip_address) (IPAddress)
IN_SUMMARY Destination 90 "Destination Address"

/*
** Here we have a loop to process any IP options.
** The option_loop GROUP is repeated until all the header
** data is processed (i.e. the count of doublewords in IHL
** minus 5).
*/
GROUP option_loop IF (FieldIs GreaterThan 5 ihl) REPEAT SIZE (FromField DWords ihl 5)
{

/*
** Here's a good use of a GROUP FIELD to decode and display
** the option type.
*/
GROUP FIELD ip_opt_type (Fixed 1) (Table ip_options)"IP Option"
{

/*
** Most options include a one-byte length field.
** The extra data in the options table indicates
** whether this should be present or not.
*/
FIELD opt_length (Fixed 1) IF (MatchTableDataip_options ip_opt_type 1) (Decimal)"Option

length"

/*
** We branch to option-specific code
** for the rest of the job.
*/
BRANCH (FromTable ip_options ip_opt_type)

}
}

/*
** The following two fields deal with the possibility
** that the frame is fragmented.
*/
FIELD set_fragmentation (Fixed 0)
PROCESSING (IpSetFragmentation a mf offset src_addr dest_addr decoder ID set_fragmentation)
(Decimal) SUPPRESS_DETAIL

FIELD consume_fragment (ToEndOfLayer) IF (IpWholePayloadNotAvailable a) (Constant "Decode is in
another frame") "Payload is fragmented"

TELEDYNE LECROY Chapter 11 One Complete Example

166 DecoderScript ReferenceManual and User Guide

/*
** Here ends the main path of this decoder. The statements
** that follow are for decoding specific IP options and
** we have not commented them.
*/
END_MAIN_PATH

GROUP misc_pointer
{

FIELD miscellaneous_pointer (Fixed 1) (Decimal) Pointer
FIELD miscellaneous_data (FromField Bytes opt_length 3) (StringOfHex 6) Data

}

FIELD misc_opt (FromField Bytes opt_length 2) (StringOfHex 6)Data

GROUP ts
{

FIELD ts_point (Fixed 1) (Decimal) Pointer

FIELD ts_flags (Fixed 1) (Binary) Flags

FIELD ts_data (FromField Bytes opt_length 4) (StringOfHex 6) "TS Data"
}

GROUP security
{

FIELD sec_class (Fixed 1) (Table sec_TABLE) Classification

FIELD sec_flags (FromField Bytes opt_length 3) (StringOfHex 6) Flags
}

GROUP rtr_opt
{

FIELD rtr_opt_data (Fixed 2) (Table rtr_options) "Router Option"
}

Chapter 11 One Complete Example TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 167

168 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Chapter 11 One Complete Example

Chapter 12 A Formal Grammar for Decoder Scripts
Here we provide precise specifications for the syntax of decoder executable statements using a BNF-type
grammar. We have simplified the grammar a little and, we trust, made it much easier to read by skipping
definition of the blank space that separates items. The rule for such space is that any consecutive items must be
separated by at least one unit of white space (a space character or an end of line) and may be separated by
several.

You may want to print out this chapter and stick the hardcopy to your wall as a reference.

Some notes about the forms used to define the grammar:

l A parenthesized expression within a non-terminal is a comment. Thus, in "<(size)method>" the "size" is a note
to tell you that a Size Method is required in the context but the syntax is defined simply by "<method>".

l A phrase such as "1*<x>" means a string of one or more <x>'s. Similarly, "*1-16<y>" means a sequence of
between one and sixteen <y>'s.

l An ellipsis means the preceding item may be repeated any number of times.

l A name/string must be enclosed in double quotes if it contains spaces or characters other than letters,
numbers, and underscores.

And here is the grammar:

decoder ::= <header> DECODE <table>... <statement>...

header ::= [<comment>] <name> <decoder_id> [<data_order>] [<comment> [<header_item>]...

decoder_id ::= <number>

data_order ::= NETWORK_DATA_ORDER | HOST_DATA_ORDER

header_item ::= PREPROCESSING <(preprocessing)method> |
POSTPROCESSING <(postprocessing)method> |
NEXT_PROTOCOL <(next_protocol)method> |
NEXT_PROTOCOL_OFFSET <(next_protocol_offset)method> |
NEXT_PROTOCOL_SIZE <(next_protocol_size)method> |
FRAME_BEFORE_DECODING <(frame_transformer)method> |

DecoderScript ReferenceManual and User Guide 169

FRAME_AFTER_DECODING <(frame_transformer)method> |
RECOGNIZER <(recognizer)method> |
PAYLOAD_IS_BYTE_STREAM |
BYTE_STREAM_FRAMER <(ByteStreamFramer)Method> |
SUMMARY_COLUMNS <column list> |

column list ::= "{" <summary_label> <column_width> ... "}"
summary_label ::= <string>

column_width ::= <number>

table ::= TABLE <name> <table_entry>... ENDTABLE
| TABLE <name> "@" <filename>

table_entry ::= "{" <match> [<match_hi>] <summary_string> [<detail_string>] [<user_data>] [<branch_
field>] "}"

match ::= <number> | DEFAULT

match_hi ::= <number>

summary_string ::= <string>

detail_string ::= <string>

user_data ::= <number>

branch_field ::= <(field)name>

statement ::= <branch> | <field> | <group> | <group-field> | <reserved>

branch ::= BRANCH <(branch)method>

field ::= <field_definition> | <field_reference>

Note: Because of the complexity and importance of the FIELD statement, mandatory fields
are highlighted <...> to aid the programmer. These fields will appear in every Field statement.

field_definition ::= FIELD <(field)name> [<startbit_clause>] <(size)method> [<conditional_clause>]
[<retrieve_clause>] [<processing_clause>] <format> [<summary_tag_clause>] <(decode_
pane)string> [<tag_clause>] [<margin_text_clause>][<info>][<nomove>] [<data_order>] [<verify_
clause>][<store-clause>]

summary_tag ::= IN_SUMMARY | IN_SUMMARY_ONLY | IN_COLLAPSED

field_reference ::= FIELD <(field)name> ;

group ::= GROUP <(group)name> [<if_clause>] [<repeat_clause>] [<(detail)string>] { 1*<statement>}

group-field :: = GROUP <field_definition>

<reserved> ::= RESERVED <(field)name> <(size)method>

atom_char ::= <letter> | <digit> | <underscore>

TELEDYNE LECROY Chapter 12 A Formal Grammar for Decoder Scripts

170 DecoderScript ReferenceManual and User Guide

conditional_clause ::= <if_clause> | <print_if_clause>

decimal ::= [<minus>]1*<digit>

data_order ::= HOST_DATA_ORDER | NETWORK_DATA_ORDER

digit ::= 0 ‐ 9

float ::= [<minus>]0*<digit>.1*<digit> | [<minus>]1*<digit>.0*<digit>

format ::= <(format)method> [ALSO <(format)method>]

hex ::= 1*<hexit>

hexit ::= <digit> | a ‐ f, A - F

if_clause ::= IF [NOT] <(boolean)method> [ELSE_SKIP <(size)method>]

IN_SUMMARY_clause ::= IN_SUMMARY <(summary_column)string> <(column_width)number>

info ::= INFO

letter ::= a ‐ z, A ‐ Z

margin_text_clause ::= MARGIN_TEXT <(format)method>

method :: = (<(method)name>) | (<(method)name> *1-15<param>)

minus ::= -

name ::= 1*<atom_char>

name_char ::= <space> | <atom_char>

nomove ::= NO_MOVE

number ::= <decimal> | <hex> | <float>

param ::= <string> | <number> | <(field/variable)name> | <table_name>

print_if_clause ::= PRINT_IF [NOT] <(verify)method>

repeat_clause ::= REPEAT UNTIL <(boolean)method> | REPEAT COUNT <(size)
method> | REPEAT SIZE <(size)method> [TRUNCATED_FIELD_OK]

retrieve_clause ::= RETRIEVE <(retrieve)method> [ALSO <(retrieve)method>]…

processing_clause ::= PROCESSING <(processing)method> [ALSO <(processing)method>]…

space :: = space character

startbit_clause ::= START_BIT <(startbit)method>

store_clause ::= STORE <(variable>name> [<retrieve_clause>]

Chapter 12 A Formal Grammar for Decoder Scripts TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 171

string ::= 1*<atom_char> | "1*<name_char>"

tag_clause ::=TAG <(tag)method>

underscore ::= _

verify_clause ::= VERIFY | SUPPRESS_IF_VERIFIED [NOT] <(verify)method> | VERIFY <
(crc)method> [ALSO [NOT] <(verify)method>| ALSO <(crc)method>]

TELEDYNE LECROY Chapter 12 A Formal Grammar for Decoder Scripts

172 DecoderScript ReferenceManual and User Guide

Technical Support

Technical support is available in several ways. The online help system provides answers to many user related
questions. Frontline’s website has documentation on common problems, as well as software upgrades and utilities
to use with our products.

Web: http://www.fte.com, click Support

Email: tech_support@fte.com

If you need to talk to a technical support representative, support is available between 9am and 5pm, U.S. Eastern
time, Monday through Friday. Technical support is not available on U.S. national holidays.

Phone: +1 (434) 984-4500 Fax: +1 (434) 984-4505

DecoderScript ReferenceManual and User Guide 173

http://www.fte.com/
mailto:tech_support@fte.com?subject=ComProbe Techncial Help?subject=ComProbe Techncial Help

174 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY

Appendix A: Decoder Summary
Here we present a skeleton decoder that you may find useful as a base to work from:

/* Header comments */
"Protocol Name" [Decoder ID in Hex] [Data Order]
NEXT_PROTOCOL (NextProtocolMethod param)
DECODE
TABLE tablename
{ low_value [high_value] "summary string" "decode string"
extradata field/groupname}
ENDTABLE
FIELD fieldname (fieldsize) (format method) "decode label"
FIELD fieldname (fieldsize) conditional_statement (format method)
IN_SUMMARY ColumnLabel defaultWidth "decode label"
VERIFY (verify method)
FIELD fieldname ;
GROUP name "label"
{

FIELDS
}
GROUP name conditional_statement
{

FIELDS
}
END_MAIN_PATH
<GROUP and FIELD definitions for stuff called above>

DecoderScript ReferenceManual and User Guide 175

Appendix B: Using Protocol Analyzer wtih the Option for
Creating Decoders
B.1 Reload Decoders
When writing a decoder, it is often very useful to be able to view the results of changes right away. To reload the
decoders to determine the effect of decoder changes, load a capture file into the protocol analyzer. Change your
decoder in a text editor and save your changes. In the protocol analyzer, open the Frame Display window and click
the icon on the far right of the toolbar that looks like two arrows.

B.2 Building Methods
Your custom methods will be automatically built for you, provided you have Microsoft's Visual C++ 2008 (known
also as Visual C++ 9.0) installed on your system. Assuming that you do, all you need to do is start the protocol
analyzer. It should detect that you have a method that needs to be built and ask you if you want to build it now.

You can also build your methods at any time by using the toolbar buttons. Start the protocol analyzer. If you are in
live mode (i.e. you have the data capture icons on your toolbar), go to the File menu on the Control window and
choose Close. Any open capture files will be closed, and the protocol analyzer will enter View Mode. You will find
two icons in addition to the File-Open icon.

The icon with the red arrow, will recompile all methods that have changed. The second icon, will rebuild all
methods for which there are source files. In the <installation path>\Executables\Core directory, a Method.Log will
be created. This file has the inputs and outputs to every method called for every field in the file. You want to use
this with a file of just a few frames because otherwise the log file gets very large and it's very difficult to match the
log data against the capture file.

B.3 How to Insert Fictitious Protocol into a Fictitious Product
If you are writing decoders for industrial automation analyzers, you may want to add your decoder as a separate
analyzer in the launcher. This way your users can simply click on the "Analyze My Custom Industrial Protocol" link
instead of choosing a generic analyzer and setting the stack within the software themselves.

The example product is called "Fictitious Product". The example protocol is called "Fictitious Protocol". All
references to file names and tags in files will use that name for convenience.

DecoderScript ReferenceManual and User Guide 176

File “FP.personality” must be modified so that an option to analyze data with the new decoder or stack will be
presented by the launch application. The decoder-writer will determine the name of the personality file. In
general, to insert the new protocol, change "Fictitious Protocol" or "FictitiousProtocol", the placeholders in the
examples below, to the name of the desired protocol. Spaces are not important in items that are for display only
or in items that are used in determining the application command line. Items in italics are just display items, and
are completely at the decoder-writer's discretion. Items in bold-type must be consistent both inside a file and
across the files. Note that angle brackets, '<' and '>', are used to indicate variable entries, and are not a part of the
actual syntax.

The resulting file path will be: FP.personality will be put into My Decoders.

You will need to include this files in your distribution package along with the method(s) and decoder(s).

The contents of file "FP.personality" are:

[Rules]

0x7f000404,0x7f000000,0x7f000000 TCP - Fictitious Protocol

[Filters]

Include Fictitious Protocol,Predefined\TCP IP\Include,,Include,port 9998 or port 9999

[Port Assignments:TCP]

9998-9999,0x7f000000

[Predefined Stacks]

Fictitious Protocol with autotraverse,Auto,0x7f000000,

[Common Personality]

CbSizeInKbytes=16398

FileSizeInKbytes=32793

WrapBuffer=FALSE

CompanionSizeMultiplier=3

StartupWindows=CVStaDisp

EnableNodeFilters=true

[Personality`Fictitious Product`Ethernet`FictitiousProtocol]

ShortcutName=Ethernet\A Fictitious Protocol

SetupCommand=.\Fts /"Fictitious Product=Ethernet" /Setup /OEMKEY="FictitiousProtocol"

OemTitle=Fictitious Product Protocol Analyzer for Fictitious Protocol

Description=Double-click to analyze your Fictitious Protocol network, or click the [Go!] button.

The Rules, Filters, Port Assignments and Predefined Stacks sections are described in Chapter 4:
[ProtocolName].personaility Files on page 37. The Common Personality section does not need to be included in
your custom personality file. If no Common Personality section is found, the software will use the one found in the
personality file for the product, which is as it should be.

TELEDYNE LECROY Appendix B: Using Protocol Analyzer wtih the
Option for Creating Decoders

177 DecoderScript ReferenceManual and User Guide

You will need to change the Personality section. Line order within the section is not important, with the exception
of the first line.

The first line is the personality section header, and it must be the first line. The format is "[Personality`<Product
Name>`<Driver Key>`<OEM Key>]". In this example, the data are being collected from an Ethernet network, so
we must set the Driver Key to "Ethernet". We have decided to use a tag "FictitiousProtocol" as the OEM Key (to
differentiate from other Ethernet personalities). The decoder-writer will determine that key value, but it must be
consistent within and across the files. You can find the appropriate values for the Product Name and Driver Key by
looking in the personality file for your product.

The next line is the Shortcut name. The format is "ShortcutName=<Driver Group>\<Protocol Display Name>". The
driver group will generally already be displayed in the selector, so to put the protocol in an existing group, use one
of those names - in this case, "Ethernet" has been used. Another name could be used, but that will create a new
group. The Protocol Display Name is at the discretion of the decoder-writer.

The next line is the SetupCommand. This is the command line that will be used to launch the setup mode of the
protocol analyzer. The format is "SetupCommand=.\Fts /"<Product Name>=<Driver Key>" /Setup
/OEMKEY="<OEM Key>".

The next line is the OemTitle. This is the title that will be displayed on the Control Window of the protocol
analyzer. The format is "OemTitle=<Decoder-writer's choice of title>".

The next, and in this case last, line is Description. This is the description of the action that the "Go" button will
perform in the selector application. The format is "Description=<Decoder-writer's choice of description>".

Pay careful attention to the leading character in the personality section of the personality file. This character is
used as a separator, and is a grave accent, and is found on the upper-left key on a keyboard, co-located with the
'~'.

Appendix B: Using Protocol Analyzer wtih the
Option for Creating Decoders

TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 178

179 DecoderScript ReferenceManual and User Guide

TELEDYNE LECROY Appendix B: Using Protocol Analyzer wtih the
Option for Creating Decoders

Appendix C: Key Word List

Key Word Description
ALSO Chains together RETRIEVE, FORMAT or VERIFY statements

ALWAYS_ASK Used in conjunction with the PARAMETER keyword. Forces the user to enter the
parameter every time the decoder is loaded.

APPEND_ONLY Used in conjunction with TABLE. Causes the protocol stack to automatically
traverse to your protocols and use your custom decoders when relevant.

APPEND_AND_
OVERWRITE

Used in conjunction with TABLE. Causes the protocol stack to automatically
traverse to your protocols but will overwrite table properties. Use with caution.

ASK_IF_NOT_
DEFINED

Used in conjunction with the PARAMETER keyword. Asks the user for the
parameter the first time the decoder is loaded, and doesn't ask again after that.

BRANCH Causes control to pass to one of several places depending on the results of the
Branchmethod.

BYTE_STREAM_
FRAMER

Reference section keyword followed by a byte stream framermethod. Works in a
similar fashion to a frame recognizer, except that it operates only on the data found
at the current layer.

COUNT Used with REPEAT clauses to repeat the group X number of times.

DECODE Begins the decoder.

DEFAULT Specifies the default entry for tables.

ELSE_SKIP Used with a Sizemethod to skip a specified amount of data if a conditional fails. If
the ELSE_SKIP is not present, no data is skipped.

END_MAIN_PATH Ends the decoder. At this statement decoding of this layer stops.

ENDTABLE Specifies the end of a table.

FIELD Themain component of the decoder.

Table C.1 - Key Words with Descriptions

DecoderScript ReferenceManual and User Guide 180

Key Word Description
FRAME_AFTER_
DECODING

Reference section keyword followed by a frame transformermethod that
processes the frame after it has been decoded.

FRAME_BEFORE_
DECODING

Reference section keyword followed by a frame transformermethod that
processes the frame before it is decoded.

FIXED In a FIELD will return a fixed number of bit, bytes, or other units specified.

GROUP Used to group together FIELDs for a variety of reasons. Groups can be the
destination of a branch, they can have conditionals placed on them or REPEAT
clauses such that the fields in the group are executedmultiple times.

HOST_DATA_
ORDER

Can be placed either after the decoder ID at the top of the decoder, in which case
all fields are interpreted in host data order, or at the end of a field statement, in
which case just that field is interpreted in host data order. See The Header Section
on page 12 for more information.

IF Conditional. Used with Booleanmethods.

IGNORE_BRANCH_
FIELDS

This lets you use a table across multiple decoders without bringing in all of the
DecoderScript to satisfy the Branch fields in TABLEs.

IN_COLLAPSED Places the results of the field just in the summary line of a collapsed protocol in the
Protocol Navigator.

IN_SUMMARY Places the results of the field in the Summary pane on the FrameDisplay and in
the summary line of a collapsed protocol in the Protocol Navigator.

IN_SUMMARY_
ONLY

Places the results of the field in just the Summary pane on the FrameDisplay

INCLUDE Inserts the named file at this location in the decoder.

INCLUDE_IF_
EXISTS

Inserts the named file at this location in the decoder if the file exists, otherwise it is
not included.

INFO Causes the field output to be displayed in an Information line at the top of the
Decode pane in addition to its normal location in the decode.

LIST Defines a list of legal values that a parameter can take. Used in conjunction with
the PARAMETER keyword.

MARGIN_TEXT Causes the field output to be appended to themargin text in the Protocol
Navigator.

NETWORK_DATA_
ORDER

Can be placed either after the decoder ID at the top of the decoder, in which case
all fields are interpreted in network data order, or at the end of a field statement, in
which case just that field is interpreted in network data order. See The Header
Section on page 12 for more information.

NEVER_ASK Used in conjunction with the PARAMETER keyword. Never asks the user for the
parameter value. Useful when the parameter has a good default value that may
need to be changed only rarely.

Table C.1 - Key Words with Descriptions(continued)

TELEDYNE LECROY Appendix C: Key Word List

181 DecoderScript ReferenceManual and User Guide

Key Word Description
NEXT_PROTOCOL Reference section keyword followed by a Next Protocol method. Determines the

next protocol in the stack.

NEXT_PROTOCOL_
OFFSET

Reference section keyword followed by a Next Protocol Offset method.
Determines the number of bytes between the end of the current layer and the
beginning of the next.

NEXT_PROTOCOL_
SIZE

Reference section keyword followed by a Next Protocol Sizemethod. Determines
the size of the next layer in bytes.

NO_MOVE Tells the protocol analyzer not to move the bit pointer after decoding the field.

NOT Reverses the results of a Boolean or Verify method. Often used in IF clauses.

PARAMETER Defines a runtime parameter for the decoder. Allows the user to give information to
the decoder that can be used for decisionmaking or for field definitions.

PAYLOAD_IS_
BYTE_STREAM

Reference section keyword. Tells the next protocol in the stack to treat the
payload of all subsequent frames as a continuous byte stream. Used in
conjunction with the BYTE_STREAM_FRAMER keyword.

POSTPROCESSING Reference section keyword followed by amethod that does things after the layer is
decoded. Note that thesemethods cannot change the data in the frame.

PREPROCESSING Reference section keyword followed by amethod that does things before the layer
is decoded. Note that thesemethods cannot change the data in the frame.

PROCESSING Allows you to gain control when the frame is first compiled and is useful on frames
larger than 64 bits. PROCESSING clauses can be strung together.

PRINT_IF Followed by a Booleanmethod. Prints the value of the field in the Decode pane
only if themethod returns true.

RECOGNIZER Reference section keyword. Identifier the frame recognizer for the protocol.

REPEAT Followed by a SIZE, COUNT or UNTIL keyword. Used with groups to cause the
group to be repeated.

RESERVED Used with Sizemethods to skip a specified amount of data.

RETRIEVE Used with Retrievemethods, which usually manipulate the contents of the field
before displaying it.

SIZE Followed by a Sizemethod. Used with the REPEAT keyword on groups to repeat
the group until the number of bits specified in the Sizemethod have been used up.

START_BIT Followed by a Start bit method to alter the location of the bit pointer.

STORE Followed by a name. Stores the field contents under this name so other methods
can reference it.

SUMMARY_
COLUMNS

Followed by a list of Summary Pane Column names and their default widths.
Allows you to define the order of the Summary Pane entries.

Table C.1 - Key Words with Descriptions(continued)

Appendix C: Key Word List TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 182

Key Word Description
SUPPRESS_
DETAIL

Prevents the field from being displayed in the Decode pane.

SUPPRESS_IF_
VERIFIED

Prevents the field from being displayed in the Decode pane only if the Verify
passes. The field is shown if the Verify fails.

TABLE Begins a table.

TAG Followed by a Tagmethod. Used to tag a field for filtering, tracking and other
purposes.

TRUNCATED_
FIELD_OK

Suppresses an error if a group is truncated, usually an indication of a faulty
decoder or damaged frame.

UNTIL Followed by a Booleanmethod. Used with the REPEAT keyword on groups to
repeat the group until the Booleanmethod returns true.

VERIFY A clause placed at the end of FIELD statement to compare the field value with a
constant using for example FieldIs or FielsIsBetween.

Table C.1 - Key Words with Descriptions(continued)

TELEDYNE LECROY Appendix C: Key Word List

183 DecoderScript ReferenceManual and User Guide

Appendix D: Creating Custom Frame Recognizer
The recognizer returns are 32-bit bit masks that represent which events to add and when and where to add them.
We've created enumerations representing the most common returns we think will be needed, but you may need
to create your own if an existing enumeration does not meet your needs. (Existing enumerations are listed in the
chapter on writing Frame Recognizers.)

We've created some basic enumerations/macros so you don't need to know the exact format of the bit mask. This
way if the format ever changes, your recognizer will still work.

To add framing events, use one or more of the following recognizer result enumerations:

ThisSideBefore(Recognizer Event)
ThisSideAfter(Recognizer Event)
OtherSide(Recognizer Event)

Possible Recognizer Events are:

StartOfFrame
EndOfFrame
BrokenFrame

You can specify more than one recognizer event per recognizer result by using the OR operator, with one
exception. You cannot use both a BrokenFrame and EndOfFrame in the same recognizer return. A broken frame
event means the frame didn't end when the recognizer expected it to. The broken frame is inserted to let the
end-user know that something went wrong and end the current frame so the recognizer can start over with trying
to find the beginning of the next frame.

For example, to insert a start of frame event before the current byte (the equivalent of the eInsertSofBefore
enumeration), you would use the syntax:

iOutput = (eRecognizerResult)(ThisSideBefore(StartOfFrame));

To frame a single byte as one frame, you would use:

iOutput = (eRecognizerResult)(ThisSideBefore(StartOfFrame)|ThisSideAfter(EndOfFrame));

To end the current frame and begin a new one on the same side (the equivalent of eNewFrameEndThisSide), you
would use:

iOutput = (eRecognizerResult)(ThisSideBefore(StartOfFrame|EndOfFrame));

DecoderScript ReferenceManual and User Guide 184

How does the recognizer know that the end of frame event needs to be inserted in the buffer before the start of
frame event? The recognizer events are added to the capture buffer in the following order:

ThisSideBefore
BrokenFrame OR EndOfFrame (these are mutually exclusive)
StartOfFrame

Data Event
ThisSideAfter

BrokenFrame OR EndOfFrame
StartOfFrame

OtherSide
BrokenFrame OR EndOfFrame
StartOfFrame

TELEDYNE LECROY Appendix D: Creating Custom Frame Recognizer

185 DecoderScript ReferenceManual and User Guide

Appendix E: Method Reference
E.1 Group Boolean

E.1.1 Check_CrcCCITTrevDataBytes
Description:

The Check_CrcCCITTrevDataBytes method calculates the CCITT checksum after reversing the data bytes. It then
compares the result with the value in the "Field with CRC". It returns TRUE if the values match, else it returns
FALSE.

Parameters:

[Required] Int "First byte to include (0=first byte in layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value: NoSwap)

List values: NoSwap

Swap

[Required] Field "Field with CRC"

Example:

FIELD bad_crc_packet (ToEndOfLayer) IF NOT (Check_CrcCCITTrevDataBytes 0 0xFFFF NoSwap
crc_field) (Hex) "Bad Packet"

E.1.2 CompareFields
Description:

CompareFields compares two fields and returns TRUE if the relationship is true.

DecoderScript ReferenceManual and User Guide 186

Parameters:

[Required] Field "First field to compare"

[Required] List "Operator"

List values: GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Field "Second field to compare"

Example:

GROUP doifconditiontrue IF (CompareFields field1 EqualTo field2)

E.1.3 CurrentDataMatches
Description:

This method returns TRUE if the current data has the value of the "Value to match" parameter. This allows you to
check the value of data at the pointer without explicitly decoding it with a FIELD statement. It requires two
parameters: 1) the number of bits (1 to 64) to be extracted from the data for comparison and 2) the value to be
matched against.

This method is particularly useful in two situations. The first is in a GROUP statement to check a field before
decoding it. You might, for example, have a field that is defined as being a four-byte field if the first byte contains
hex FF and a two-byte field otherwise. You can see examples in the SMB decoder.

The second case is where you want to decode a field only if it contains a certain value. Consider, for example, this
pair of statements from the NCP decoder:

FIELD printer_off_line (Fixed 1) IF (CurrentDataMatches 8 0xff) (Constant "Halted") "Printer Status"
FIELD printer_on_line (Fixed 1) IF (CurrentDataMatches 8 0x00) (Constant "Not Halted") "Printer Status"

Here a one-byte field is deemed to exist and is decoded only when its value is zero or hex FF.

Parameters:

[Required] Int "Number of bits to match (from 1-64)"

[Required] Int64 "Value tomatch"

Example:

TELEDYNE LECROY Appendix E: Method Reference

187 DecoderScript ReferenceManual and User Guide

GROUP string_bindings REPEAT UNTIL (CurrentDataMatches 8 0x01)

E.1.4 DCE
Description:

This method returns TRUE if the frame comes from the DCE side. This method has relevance only for data
received from a serial type connection.

Parameters:

None

Example:

FIELD streamDCE (Fixed 4) IF (DCE) (StringOfHex) "DCE DATA"

E.1.5 DTE
Description:

Dte returns TRUE if the frame comes from the DTE side. This method has relevance only for data received from a
serial type connection.

Parameters:

None

Example:

FIELD dte_stream (Fixed 4) IF (DTE) (StringOfHex) "DTE Data"

E.1.6 FieldIs
Description:

This method returns TRUE if the statement is true. The statement compares the value in "Field to test" against a
specified value using the given operator.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 188

[Required] Int "Operator"

List values: GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Int64 "Value"

[Required] Field "Field to test"

Example:

Here's a typical example taken from the X.25 decoder (example has been edited):

FIELD called_addr(Fixed2) IF (Fieldls GreaterThan called_addr_lgh 0)(StringOfBcd) "Called Address"

In this case a field exists only when its length(called_addr_lgh) is non-zero.

E.1.7 FieldIsBetween
Description:

FieldIsBetween returns TRUE if the value in the "Field to test" is equal to or between the specified low and high
values.

Note: This test is inclusive. In other words, if the value in the "Field to test" is equal to either
the low or high value, themethod will return true.

Parameters:

[Required] Int64 "Low value"

[Required] Int64 "High value"

[Required] Field "Field to test"

Example:

GROUP if_not_sco_pkt IF NOT(FieldIsBetween 5 8 packet_type)

Returns True if 5 ≤ packet_type ≤ 8.

Returns False if packet_type ˂ 5 or if packet_type ˃ 8.

TELEDYNE LECROY Appendix E: Method Reference

189 DecoderScript ReferenceManual and User Guide

E.1.8 FieldLengthIs
Description:

This method returns TRUE if the statement is true. The statement compares the value in "Field containing length
value" against the length of the current field using the given operator.

Parameters:

[Required] List "Operator"

List values: GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Field "Field containing length value"

[Required] Field "Field whose length to test"

Example:

FIELD segment (FromField Bytes LOS) IF (FieldLengthIs GreaterThanOrEqualTo LOS get_segment_
length) (StringOfHex) "Segment"

E.1.9 IndexedPersistentStaticExists
Description:

This method checks to see if the specified inter-frame data exists, which is true only if it has been encountered in
any decoder in any frame so far. In the case of the IndexedPersistentField, it checks to see if the index value is
good. It returns TRUE if the value is good and FALSE if the value isn't there. This is useful in cases where you have
saved a field value with an index, but the index field hasn't been encountered yet. Using the example from the
StoreIndexedPersistentField method, this method would check to see if a command to the slave specified in the
parameter has been seen. If not, you can do something appropriate.

Parameters:

[Required] StaticName "Inter-frame data name"

[Required] Field "Field that contains the index"

Example:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 190

FIELD retrieve_type (Fixed 0) IF (IndexedPersistentStaticExists usb_type_with_address frame_
address) RETRIEVE (IndexedPersistentField usb_type_with_address frame_address) (TABLE
types) SUPPRESS_DETAIL

E.1.10 IntraframeStaticExists
Description:

This method checks to see if the specified intra-frame data exists, which is true only if it has been encountered in
any decoder so far in the current frame. It returns true if the value is good, and false if the value isn't there. This is
useful in cases where you have saved a field value, but that field may not be encountered in every frame. You can
use this method in conjunction with the IntraframeField method to see if the data exists and do something
appropriate if it doesn't, like skip the field, or decode something else instead. The method doesn't take a
parameter, but you do need to specify which field value you're checking for.

Parameters:

[Required] StaticName "Intra-frame data name"

Example:

This example uses the boolean to skip the field if the intra-frame data doesn't exist.

FIELD my_field_2 (Fixed 0) IF (IntraframeStaticExists field_name) RETRIEVE (IntraframeField field_
name) (Decimal) "Field Name"

E.1.11 IsInTable
Description:

This method returns TRUE if the value of the current field exists in the specified table and is not the default.

Parameters:

[Required] Table "Table"

[Required] Field "Field"

Example:

GROUP valid_types IF (IsInTable point_types is_valid_type)

E.1.12 IsOdd
Description:

This method returns TRUE if the field passed in is an odd number

TELEDYNE LECROY Appendix E: Method Reference

191 DecoderScript ReferenceManual and User Guide

Parameters:

[Required] Field "Field to test"

Example:

GROUP end_of_path_test IF (IsOdd symbolic_length)

E.1.13 IsProbablyAtType
Description:

This method returns TRUE if the frame is probably an AT command. The criteria is: If the frame ends in <CR>, and
the last two bytes are not a legal FCS, and all characters in the frame are printable ASCII, then it is an AT frame.

Parameters:

None

Example:

GROUP decode_at_command IF (IsProbablyAtType)

E.1.14 MatchTableData
Description:

This method returns TRUE if the table data matches the parameter "Value to match". A typical use of this method
is to distinguish various classes of message, for example commands, responses and data.

Parameters:

[Required] Table "Which table"

[Required] Field "Which field"

[Required] Int64 "Value tomatch"

Example:

Examples of its use can be seen in the HTTP and SMTP decoders. One instance from the latter decoder is (the
table has been edited for clarity):

TABLE cmd_reply

{0x48454c4f "HELO" "Hello" 1 hi}
{0x4d41949c "MAIL" "Mail" 1 from}
{0x51554954 "QUIT" "Quit" 1 end}

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 192

{0x32313120 "Status" System status, or system help reply" 2}
{0x32313420 "Help" "Help message" 2}
{Default ""default"3}
ENDTABLE

FIELD type (Fixed 4) (Hex) SUPPRESS_DETAIL NO_MOVE

Group cmd IF (MatchTableData cmd_reply type 1)

This takes the value in the field "type" and looks it up in the table "cmd_reply". Then the table data for that entry is
checked against the constant given in the parameter "Value to match". For example if the value of "type" were
0x48454c4f. the test would return true because this value matched the "HELO" entry in the table, and the table
data for "HELO" is 1, which matches the 1 given as the parameter.

E.1.15 MoreBytes
Description:

This method returns TRUE if there are more bytes to be decoded in the layer, and false if the current bit is at the
end of the layer. If the current pointer is not at a byte boundary it is moved up to the next byte boundary for the
purposes of the calculation. The parameter "Offset from end in bytes" specifies how many bytes at the end of the
layer to disregard when determining if there are more bytes remaining. This is useful if you want to ignore a CRC,
for example. This method is often used to test for optional fields at the end of a layer.

Parameters:

[Optional] Int "Offset from end in bytes" (Default value: 0)

Example:

GROUP more_ieee_format_data IF (MoreBytes)

E.1.16 MoreBytesInSegement
Description:

This method figures out how much data has been consumed between the start of the field in the "Field that
contains length" parameter and the current bit position. Then it compares the value in the "Field that contains
length" parameter with the amount of data consumed and returns TRUE if there is more data to decode and
FALSE if not.

Parameters:

[Required] Field "Field that contains length"

[Optional] Int "Size of Parameter Field In Bytes" (Default value: 0)

Example:

TELEDYNE LECROY Appendix E: Method Reference

193 DecoderScript ReferenceManual and User Guide

FIELD consume_data (RelativeFromField length 1) IF (MoreBytesInSegment length 1) (StringOfHex 64) "Data"

E.1.17 MoreBytesToDecode
Description:

This method figures out how much data has been consumed between the start of the field in the "Field that
contains length" parameter and the current bit position. Then it compares the value in the "Field that contains
length" parameter with the amount of data consumed and returns TRUE if there is more data to decode and
FALSE if not.

Note that this method is inclusive, which means if you need to find out how much data has been consumed not
including the data in the first parameter field, you will need to include the size of that field as an offset. See Size
method RelativeFromField for one use of this method.

Parameters:

[Required] Field "Field that contains length"

[Optional] Int "Size of Parameter Field In Bytes" (Default value: 0)

Example:

FIELD consume_data (RelativeFromField length 1) IF (MoreBytesInSegment length 1) (StringOfHex 64)
"Data"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 194

E.2 Group: Branch

E.2.1 DTEorDCE
Description:

This method chooses one of two branch targets depending on whether the current frame came from the DTE or
the DCE. Clearly this has meaning only in contexts where there are two data streams distinguished as DTE and
DCE. The first parameter names the statement to be branched to for a DTE frame and the second names the
target for a DCE frame.

Parameters:

[Required] Filed "Field present if this frame is DTE"

[Required] Filed "Field present if this frame is DCE"

Example:

In the X.25 protocol, everything is defined in terms of DCE and DTE and so near the toe of the X.25 decoder is the
statement:

BRANCH (DTEorDCE dte_pkt dce_pkt)

This says: If the frame came from the DTE side, branch to the "dte_pkt" field, and if the frame came from the DCE
side, branch to the "dce_pkt" field.

E.2.2 FromTable
Description:

FromTable causes a branch to the statement named in the branch item of a table entry. This is very commonly
used and examples can be seen in many decoders. As in all similar cases, the field in question must have been
previously decoded.

If the matching table entry has no branch item then no branch is made and control continues at the next
statement in sequence. Omitting branch targets from tables is considered perfectly good practice when it is
appropriate. If there is no matching entry in the table then the Default entry, if any, is used.

Parameters:

[Required] Table "Which table"

[Required] Field "Which field"

Example:

BRANCH (FromTable type type)

TELEDYNE LECROY Appendix E: Method Reference

195 DecoderScript ReferenceManual and User Guide

E.2.3 PersistentStaticExists
Description:

This method chooses one of two branch targets depending on whether the specified inter-frame data exists. The
first branch is taken if it does exist, and the second is taken if it doesn't.

Parameters:

[Required] StaticName "Inter-frame data name"

[Required] Field "Field present if the data exists"

[Required] Field "Field present if the data doesn't exist"

Example:

GROUP dce_check_context IF (PersistentStaticExists HostSide)

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 196

E.3 Group: FORMAT

E.3.1 Binary
Description:

This method formats the current field value in binary notation. The method takes 3 optional parameters. If you
want to set only the 2nd or 3rd parameter, you must include values for previous parameters as placeholders.

The "Separator" parameter allows you to specify a character to separate multi-byte fields. The default value of "0"
will cause multi-byte fields to run together with no separator. To put a space between each byte, use (Binary " ").

The "Amount of Data to Display" parameter determines the maximum amount of data to display in the Decode
pane. A value of 0 will display all data in the field, regardless of length. This parameter is used for limiting the
amount of data displayed in the Decode pane for very large fields or fields where the size is unknown ahead of
time.

The "Suppress leading zeroes" parameter tells the method whether or not to suppress leading zeroes. The default
is "KeepPad", which means all digits in the number will be displayed, while "SuppressPad" causes leading zeroes
to be converted to blanks.

FIELD flag_byte (Fixed 8 Bits) (Binary) "Flags"

output: "Flags: 00000101"

FIELD flag_byte (Fixed 8 Bits) (Binary SuppressPad) "Flags"

output: "Flags: 101"

Parameters:

[Optional] Str "Separator" (Default value: 0)

[Optional] Int "Amount of data to display
(0=unlimited)"

(Default value: 0)

[Optional] List "Suppress leading zeroes?" (Default value:
KeepPad)

List values: KeepPad

SuppressPad

Example:

FIELD multicast_test START_BIT (Move 7 Bits) (Fixed 1 Bit) (Binary) SUPPRESS_DETAIL NO_MOVE

E.3.2 Constant
The method Constant is an exception among format methods in that it does not actually format anything or even
make use of the field value. Rather it passes on for display a string passed as a parameter.

One time Constant is handy is when you want to add a units (or other) qualifier to a number as in:

FIELD port_speed (Fixed 2 Bytes) (Decimal) ALSO (Constant "bps")

TELEDYNE LECROY Appendix E: Method Reference

197 DecoderScript ReferenceManual and User Guide

One more valuable use for Constant is when we want to note if a particular field is

present or not without needing to display its value. This typically fits when a

PRINT_IFclause is used as in:

FIELD archive (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Archive") "Attribute"
FIELD hidden (Fixed 1 Bit) PRINT_IF (FieldIs EqualTo 1) (Constant "Hidden") "Attribute"

Parameters:

[Required] Str "String to print"

Example:

FIELD command (Fixed 2) (Constant "AT Command") IN_SUMMARY "Address/Control

E.3.3 Decimal
Description:

This method formats the field value as a signed decimal number. The field must be 64 bits or less in size. An error
will be displayed if Decimal is used on fields greater than 64 bits in size.

Field values are inherently unsigned, so if there is a possibility that the field could have a negative value, you
should use "RETRIEVE (SignExtension)" in addition to the Decimal format method. You can use this method to
format a field value as an unsigned decimal number by not doing the RETRIEVE.

Parameters:

None

Example:

FIELD signed_decimal (Fixed 2 Bytes) RETRIEVE (SignExtension 16) (Decimal) "Signed Decimal"
FIELD unsigned_decimal (Fixed 2 Bytes) (Decimal) "Unsigned Decimal"

For the value of 0xCAFE, signed _decimal displays- 13570 while unsigned_decimal displays 51966.

E.3.4 DecimalWithFieldLabel
Description:

This method adds a value from another field to the format, like this: "other_field = this_field". The two fields are
output in decimal.

Parameters:

[Required] Field "Other field to format with"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 198

Example:

FIELD state_bit_w_cnt (Fixed 1 bit) (DecimalWithFieldLabel counter) "State"

E.3.5 DOSDate
Description:

This method formats a 16-bit field value interpreted as a date expressed in DOS directory-entry format. An error
will be displayed if DosDate is used with fields that are not 16 bits in size.

A DosDate is composed as follows:

Bits Contents

0 - 4 Day of month (1-31)

5 - 8 Month (1-12)

9 - 15 Year relative to 1980

Parameters:

None

Example:

FIELD creation_date (Fixed 2) (DosDate) "Creation Date"

E.3.6 DOSTime
Description:

This method formats a 16-bit field value as a time expressed in DOS directory-entry format. An error will be
displayed if DosTime is used with fields that are not 16 bits in size.

Bits Contents

0 - 4 Number of two-second increments (0-29)

5 - 10 Minutes (0-59)

11 - 15 Hours (0-23)

Parameters:

None

TELEDYNE LECROY Appendix E: Method Reference

199 DecoderScript ReferenceManual and User Guide

Example:

FIELD update_time (Fixed 2) (DosTime) "Update Time

E.3.7 Double
Description:

This method formats the current field value as an IEEE-standard double-precision (64 bits or 8 bytes) floating-point
number. Such a number is comprised of the following bits: 1 for sign, 11 for the exponent, and 52 for the
mantissa. The optional parameter specifies the number of decimal places to be formatted with a default of two.
An attempt to use Double with a value that has been sized at other than 64 bits will result in an error.

Parameters:

[Optional] int "Number of places after the decimal point" (Default value: 2)

Example:

FIELD lreal (Fixed 8) (Double) "LREAL" HOST_DATA_ORDER

E.3.8 Float

Description:

This method formats the current field value as an IEEE-standard single-precision (32 bits or 4 bytes) floating-point
number. Such a number is comprised of the following bits: 1 for sign, 8 for the exponent, and 23 for the mantissa.
The optional parameter specifies the number of decimal places to be formatted with a default of two. An attempt
to use Float with a value that has been sized at other than 32 bits will result in an error.

Parameters:

[Optional] Int "Number of places after the decimal point" (Default value: 2)

Example:

FIELD float (Fixed 4) (Float) "Value"

E.3.9 Hex
Description:

This method formats the current field value as a hexadecimal number. The method takes 3 optional parameters. If
you want to set only the 2nd or 3rd parameter, you must include values for previous parameters as placeholders.
See the description of the Binary method for information on the parameters.

The result of a Hex format is preceeded by "0x" to indicate hex notation.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 200

[Optional] Str "Separator" (Default value: 0)

[Optional] Int "Amount of data to display
(0=unlimited)"

(Default value: 0)

[Optional] List "Suppress leading zeroes?" (Default value:
KeepPad)

List Values: KeepPad

SuppressPad

Example:

FIELD id_code (Fixed 1 Byte) (Hex) "Id Code"

E.3.10 IPAddress
Description:

This method formats the current field value as an IP address. The field must be exactly 4 bytes in size. An error is
displayed if IpAddress is used with fields that are not 4 bytes in size. The display format is 123.123.123.123, where
each number is a decimal number.

Parameters:

None

Example:

FIELD ipaddress_4_bytes_all_0 (Fixed 4 bytes) (IpAddress) "4 Byte 00..."

E.3.11 MacAddress
Description:

This method formats a 6 byte field as a MAC Address. An error will be displayed if MacAddress is used with fields
that are not 6 bytes in size. The format is 00:01:02:03:04:05, where each digit is a hex digit. Note that this method
honors the host/network data order setting.

The "OUI table" parameter specifies a table with OUI identifiers in it. If an identifier is found, it will be used in
place of the first 3 digits. This means that if you use the MacAddress method, you must have an OUI table specified
in the decoder.

Parameters:

[Required] Table "OUI table"

TELEDYNE LECROY Appendix E: Method Reference

201 DecoderScript ReferenceManual and User Guide

Example:

FIELD dest_mac_address (Fixed 6 Bytes) (MacAddress oui) "Destination Address"

E.3.12 mdp11703
Description:

This method formats the current field value as an IEEE-20601 SFloat and the related Bluetooth Transcoder white
paper. Multiple field sizes are supported and automatically detected.

Parameters:

None

Example:

FIELD float1 (Fixed 4) (mdp11073) "Value"

FIELD float2 (Fixed 2) (mdp11073) "Value"

E.3.13 MillisecondsFrom1970
Description:

This method interprets the field value as the number of milliseconds since 1970. The field/1000 must be 32 bits in
size or less. An error will be displayed if this method is used with fields/1000 greater than 32 bits in size.

Parameters:

None

Example:

FIELD time (Fixed 6) (MillisecondsFrom1970) "Time"

E.3.14 NetBiosName
Description:

This method formats the current field value as a NetBios name. NetBios names are formed by taking a hex byte
and converting it to the equivalent ASCII character. Then take the hex value of the ASCII character, and subtract
hex 41 (ASCII 'A'). This number forms the first nibble of the actual hex value. Repeat. Take the resulting hex value
and interpret it as an ASCII character.

Parameters:

None

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 202

Example:

FIELD node_name (Fixed 4) (NetBiosName) "Net bios name"

E.3.15 Octal
Description:

Octal method formats the current field value as an octal number. The method takes 3 optional parameters. If you
want to set only the 2nd or 3rd parameter, you must include values for previous parameters as placeholders. See
the description of the Binary method for information on the parameters.

No indication is included in the formatted number that it is expressed in octal. When it is not clear from the
context that octal is being used you may want to note it in the same sort of way as in the example given for the
Hex method.

Parameters:

[Optional] Str "Separator" (Default value: 0)

[Optional] Int "Amount of data to display
(0=unlimited)"

(Default value: 0)

[Optional] List "Suppress leading zeroes?" (Default value:
KeepPad)

List values: KeepPad

SuppressPad

Example:

FIELD successor (Fixed 2) (Octal 0 0 SuppressPad) "Successor"

E.3.16 OtherField
Description:

This method takes a field as input and formats it. Normally, format methods only format the current field, but this
one actually formats a different one.

It can be used to display an enumerator field.

Parameters:

[Required] Field "Field to display"

TELEDYNE LECROY Appendix E: Method Reference

203 DecoderScript ReferenceManual and User Guide

[Optional] List "Format" (Default value: Decimal)

List values: Decimal

Hex

[Required] Field "Field with CRC"

Example:

FIELD channel_map_bits (Fixed 2 bits) IF NOT (FieldIs EqualTo 79 map_counter) (OtherField map_
counter Decimal) "Channel "

E.3.17 Scale
Description:

This method multiplies the field by the scale factor, and formats as a decimal using the "digits after the decimal
point" parameter. This method is useful because it multiplies the field value by a float, rather than an integer.

Parameters:

[Required] Float "Factor"

[Required] Int "Digits after the decimal point" (Default value: 2)

Example

FIELD data_rate (Fixed 1) (Scale .5 3) "Data Rate"

E.3.18 SecondsFrom1970
Description:

This method interprets the field value as the number of seconds since 1970. The field must be 32 bits in size or
less. An error will be displayed if this method is used with fields greater than 32 bits in size.

Parameters:

None

Example:

FIELD time_4Byte (Fixed 4) (SecondsFrom1970) "Time"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 204

E.3.19 StringOfHex
Description:

This method formats the current field as a string of hexadecimal numbers, with a space between each byte. See
the description for the StringOfASCII Method for information on the "Amount of data to display" parameter.

The "Separator" parameter allows you to specify a string to separate multi-byte fields. The default value of "0" will
cause each field to be separated by a space.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

[Optional] Str "Separator" (Default value: 0)

Example:

FIELD cont_data (ToEndOfLayer) (StringOfHex 20) "Continuation Report Data"

E.3.20 StringOfAscii
Description:

This method formats the current field as a string of ASCII characters. Non-printable characters are displayed as
dots.

The optional parameter indicates how many characters to display in the Decode pane of the Frame Display
window. Setting a value here does not affect the actual size of the field, merely prevents very long character
strings from being displayed. If there is more data in the field when the parameter value is reached, an ellipsis (...)
is displayed in the Decode pane. The default value of zero means that the entire contents of the field will be
shown, regardless of length.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

Example:

FIELD payload_data (ToEndOfLayer) (StringOfAscii) "Payload"

E.3.21 StringOfBCD
Description:

This method formats the current field as a string of binary-coded decimal. See the description for the
StringOfASCII Method for information on the "Amount of data to display" parameter.

Parameters:

TELEDYNE LECROY Appendix E: Method Reference

205 DecoderScript ReferenceManual and User Guide

[Optional] Int Amount of data to display (0=unlimited)" (Default value: 0)

Example:

FIELD release_version (Fixed 8) (StringOfBCD) "Release version"

E.3.22 StringOfBinary
Description:

This method formats the current field as a string of binary digits. See the description for the StringOfASCII Method
for information on the "Amount of data to display" parameter.

The "Separator" parameter allows you to specify a string to separate multi-byte fields. The default value of "0" will
cause each field to be separated by a space.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

[Optional] Str "Separator" (Default value: 0)

Example:

FIELD onoff_flags (Fixed 1) (StringOfBinary) "Flags"

E.3.23 StringOfDecimal
Description:

This method formats the current field as a string of decimal numbers. Each hex byte is formatted in decimal,
rather than interpreting all the bytes in the field as a single number. See the description for the StringOfASCII
Method for information on the "Amount of data to display" parameter.

The "Separator" parameter allows you to specify a string to separate multi-byte fields. The default value of "0" will
cause each field to be separated by a space.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

[Optional] Str "Separator" (Default value: 0)

Example:

FIELD events (Fixed 4) (StringOfDecimal) "Events"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 206

E.3.24 StringOfUnicode
Description:

This method formats the current field as a string of Unicode characters. Because the software can be run on
systems that do not support Unicode, this method ignores the upper byte of each byte pair and interprets the
lower byte as if it were an ASCII character. This works for the Latin alphabet but will not work for other alphabets.
Non-printable characters are displayed with a dot. See the description for the StringOfASCII Method for
information on the "Amount of data to display" parameter.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

Example:

FIELD unicode_string (ToEndOfLayer) (StringOfUnicode 30) "Unicode String"

E.3.25 StringOfUTF8
Description:

This method formats the current field as a string of UTF8 characters. Non-printable characters are displayed as
dots. See the description for the StringOfASCII Method for information on the "Amount of data to display"
parameter.

Parameters:

[Optional] Int "Amount of data to display (0=unlimited)" (Default value: 0)

Example:

FIELD stringofutf8_1_bit_off (Fixed 1 bit) (StringOfUTF8) "1 bit off"

E.3.26 Table
Description:

Table method extracts a string from a table for display. The method extracts either of two strings according to the
context in which it is to be displayed. For display in the Summary pane, the first string in the table entry is
retrieved. For display in the Decode pane, the second string is used. If only one string is present, it is used in both
the Summary and Decode panes. If the field value fails to match an entry in the table, the Default entry is used and
the field value is displayed in decimal or optionally in hex (as specified by the second parameter).

When using the Table method, the field value must be 64 bits or less in size.

Parameters:

TELEDYNE LECROY Appendix E: Method Reference

207 DecoderScript ReferenceManual and User Guide

[Required] Table "Which table"

[Optional] List "Radix for default case" (Default value: Decimal)

List values: Decimal

Hex

Example:

FIELD usb_request_type (Fixed 2) (Table request_types_table) "Request"

E.3.27 UUID
Description:

This method formats the field as a 16 byte Universally Unique Identifier (UUID). Also called Globally Unique
Identifier (GUID). An error will be displayed if UUID is used with fields that are not exactly 16 bytes in size.

The display format is (where 0x represents a hex digit):

0x0x0x0x-0x0x-0x0x-0x0x-0x0x0x0x0x0x

When the UUID's are transmitted in little-endian format of the DCE/RPC specification, the byte order is changed.
To display UUID's in this format, use the optional parameter. The optional parameter is set to default value of 0.
The default value is used in all the regular cases. (See the first example statement below.) in order to use the little-
endian display, pass an integer parameter value greater than zero. (See the second example statement below.)
When this format is used, the 16 bytes are displayed in this order:

03020100-0504-0706-0809-101112131415

Parameters:

[Optional] Int "Does this use the DCE/RPC little-endian NDR?"

Example:

Field uuid (Fixed 16) (UUID) IN_SUMMARY "UUID" "UUID"
Field uuid_dcerpc_littleendian (Fixed 16) (UUID 1) IN_SUMMARY "UUID" "UUID" HIST_DATA_

ORDER

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 208

E.4 Group: FRAME_TRANSFORMER

E.4.1 RealignOnByteBoundary
Description:

This method creates a new frame with the data realigned. This is called when the layer stops in the middle of a
byte, and the next layer needs to pick up in the same byte.

Parameters:

[Required] Field "Field to transform to"

Example:

FRAME_AFTER_DECODING (RealignOnByteBoundary crc_value)

E.4.2 StripDoubledChar
Description:

This method looks for two of the same character in a row and strips one out.

Parameters:

[Required] Int "Escaped char"

Example:

FRAME_BEFORE_DECODING (StripDoubledChar 0x10)

TELEDYNE LECROY Appendix E: Method Reference

209 DecoderScript ReferenceManual and User Guide

E.5 Group: NEXT_PROTOCOL

E.5.1 FromField
Description:

This method returns the value in the field named in the parameter. The software makes no check that the field
contains a valid value; if the field has not been processed then the result will be an indeterminate value. This lack
of a check is not due to laziness; it is because making such a check would be time consuming to a degree
unacceptable when decoding data arriving from a fast line.

Parameters:

[Required] Field "Field that contains the next protocol"

Example:

FIELD (FromField NextProtocolID)

E.5.2 FromPortAssignment
Description:

This method returns the value from the personality file for one of the two fields. The port assignment is user-
defined in the Decoder Parameters dialog.

Parameters:

[Required] StaticName "Inter-frame data name"

[Required] Field "Field to check first for the next protocol"

[Required] Field "Field to check second for the next protocol"

Example:

NEXT_PROTOCOL (FromPortAssignment UDP src_port dst_port)

E.5.3 IsAlways
Description:

The method IsAlways is used when the next protocol is invariable. It takes one parameter which is the value to be
returned

Parameters:

[Required] Int64 "Value to return"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 210

Example:

NEXT_PROTOCOL (IsAlways 0x7f008006)

TELEDYNE LECROY Appendix E: Method Reference

211 DecoderScript ReferenceManual and User Guide

E.6 Group: NEXT_PROTOCOL_SIZE

E.6.1 FromField
Description:

The method FromField returns the value from the field named in the parameter. The value is used to determine
the size of the next protocol layer.

The "Offset" parameter adds or subtracts from the value in the "Field" parameter. Positive values are added,
negative values are subtracted.

Parameters:

[Required] Field "Field that contains the next protocol size"

[Required] Int "Offset"

Example:

NEXT_PROTOCOL (FromField nlpid)

E.6.2 FromFieldIfLessThan
Description:

If the value of the field specified is less than the "Threshold" parameter, it is returned as the size of the next
protocol layer. Otherwise, the size of the next protocol layer is the rest of the payload, minus the value of the
"Offset" parameter.

Parameters:

[Required] Field "Field that contains the next protocol size"

[Required] Int "Threshold for length"

[Required] Int "Offset"

Example:

NEXT_PROTOCOL_SIZE (FromFieldIfLessThan type_length 0x5dd 4)

E.6.3 OffsetToEnd
Description:

This method sets the size of the next protocol layer as the rest of the frame minus the value of the "Offset"
parameter. The size of the next layer is thus the number of bytes in the rest of the frame minus two to allow for
the 16-bit frame-check sequence (FCS) at the end.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 212

[Required] Int "Offset from the end of frame"

Example:

The Async PPP decoder, for example, includes the statement:

NEXT_PROTOCOL_SIZE (OffsetToEnd 3)

E.6.4 OffsetToEndTakesFieldParam
Description:

This method sets the size of the next protocol layer as the rest of the frame minus the value of the "Offset"
parameter.

The size of the next layer is thus the number of bytes in the rest of the frame minus mic_size to allow for the mic_
size bytes MIC at the end.

Parameters:

[Required] Field "Offset from the end of frame"

Example:

The ZigBee NWK decoder, for example includes the statement:

NEXT_PROTOCOL_SIZE(OffsetToEndTakesFieldParam mic_size)

E.6.5 ThisLayerLength
Description:

This method sets the size of the next protocol layer to the value in the "Field" parameter minus the value of the
"Offset" parameter. ThisLayerLength is used when a field in the current layer indicates the combined size of the
current layer plus the payload, where the payload contains the next layer(s).

Parameters:

[Required] Field "Field that contains the length in bytes of this
layer"

[Optional] Int "Offset" (Default value:
0)

Example:

NEXT_PROTOCOL_SIZE (ThisLayerLength total_length)

TELEDYNE LECROY Appendix E: Method Reference

213 DecoderScript ReferenceManual and User Guide

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 214

E.7 Group: POSTPROCESSING
There are no generic Postprocessing methods.

TELEDYNE LECROY Appendix E: Method Reference

215 DecoderScript ReferenceManual and User Guide

E.8 Group: PREPROCESSING

E.8.1 InitField
Description:

This method initializes the passed field before starting the decoder. This is useful if you want to do a test on a field,
but it is not always encountered in the frame. This forces a known value into it.

Parameters:

[Required] Field "Field to set"

[Optional] Int64 "Value to set it to" (Default value: 0)

Example:

PREPROCESSING (InitField conn_numb -1)

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 216

E.9 Group: PROCESSING

E.9.1 AddPortAssignment
Description:

This method adds a temporary port mapping for use by NEXT_PROTOCOL method FromPortAssignment. An entry
will be added to an internal table for this port and this protocol number. In subsequent calls to
FromPortAssignment, the standard tables controlled by Initial Decoder Parameters will be consulted. If there is no
protocol mapped to the port, the dynamic table will be consulted.

This method adds a temporary port mapping for use by NEXT_PROTOCOL method FromPortAssignment. An entry
will be added to an internal table for this port and this protocol number. In subsequent calls to
FromPortAssignment, the standard tables controlled by Initial Decoder Parameters will be consulted. If there is no
protocol mapped to the port, the dynamic table will be consulted.

Parameters:

[Required] Filed "Port Number"

[Required] List "Port Field Format" (Default value: Ascii)

List values: Ascii

Binary

[Required] Int64 "Protocol Number"

[Required] Int "Port Offset" (Default value: 0)

Example:

FIELD myfield (Fixed 0) PROCESSING (AddPortAssignment a OtherField Ascii 2130707477 1) (Hex)
SUPPRESS_DETAIL

Note that Protocol number is expressed in decimal.

TELEDYNE LECROY Appendix E: Method Reference

217 DecoderScript ReferenceManual and User Guide

E.10 Group: RETRIEVING_DATA

E.10.1 AddField
Description:

AddField method adds the value of another field to the value of the current field, storing the result in the current
field.

Parameters:

[Required] Field "Field to add"

Example:

FIELD total_length (Fixed 2) RETRIEVE (AddField optional_fields) (Decimal) "Length"

E.10.2 AddFieldToField
Description:

AddField To Field method adds the values of two other fields, storing the result in the current field.

Parameters:

[Required] Field "First field"

[Required] Filed "Second field"

Example:

FIELD pword_address (Fixed 18 bits) RETRIEVE (AddFieldToField first14_bits

last6_bits) (Decimal) "P-word"

E.10.3 AddFieldToInteger
Description:

This method adds the value of another field to a constant, storing the result in the current field.

Parameters:

[Required] Field "Field"

[Required] Int64 "Constant value to add"

Example:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 218

FIELD increment_points (Fixed 0) RETRIEVE (AddFieldToInteger num_points 32) (Decimal) "Number of
Points"

E.10.4 AddInteger
Description:

This method adds an integer constant to the value of the current field.

Parameters:

[Required] Int64 "Constant value to add"

Example:

FIELD increment_count (Fixed 2) RETRIEVE (AddInteger 10) (Decimal) "MapCounter"

E.10.5 AddIntegerToField
Description:

This method adds a constant to the value of another field, storing the result in the current field.

Parameters:

[Required] Int64 "Constant value"

[Required] Field "Field to add"

Example:

FIELD new_count (Fixed 0) RETRIEVE (AddIntegerToField old_count 10) (Decimal) "New Count"

E.10.6 AndMask
Description:

AndMask method performs a bit-wise AND operation with the field value and a given mask. The single parameter
is the mask, which can be up to 64 bits (8 bytes) long.

A bit-wise AND compares each bit in the field value to the corresponding bit in the mask. If both are 1, the result is
1. Otherwise the result is 0. For example, if a byte field contained 0x77 and a RETRIEVE was performed using
(AndMask 0xF0), the result would be 0x70.

Parameters:

[Required] Int64 "Mask to apply to data"

TELEDYNE LECROY Appendix E: Method Reference

219 DecoderScript ReferenceManual and User Guide

Example:

FIELD connection (Fixed 2) RETRIEVE (AndMask 0xffff) (Decimal) "Address"

E.10.7 BitOffset
Description:

This method returns the bit offset of the start of the current field.

Parameters:

None

Example:

FIELD field_begin_data (Fixed 0) RETRIEVE (BitOffset) (Hex) SUPPRESS_DETAIL

E.10.8 ClearPersistentField
Description:

This method clears the specified inter-frame data that was previously set.

Parameters:

[Required] StaticName "Inter-frame data name"

Example:

RETRIEVE (ClearPersistentField tid) (Decimal) IN_SUMMARY "Trans ID" "Transaction ID"

E.10.9 DivideField
Description:

DivideField method divides the current field value by the value of another field, storing the result in the current
field. An error will be displayed and a result of -1 returned if the divisor is zero.

Parameters:

[Required] Field "Field to divide by"

Example:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 220

Field quotient (Fixed 2) RETRIEVE (DivideField divisor) (Decimal) "Result"

E.10.10 DivideFieldByField
Description:

The method divides the value of the first field by the second field, storing the result in the current field. An error
will be displayed and a result of -1 returned if the divisor is zero.

Parameters:

[Required] Field "First field"

[Required] Field "Second field"

Example:

Field quotient (Fixed 2) RETRIEVE (DivideFieldByField dividend divisor) (Decimal) "Result"

E.10.11 DivideFieldByInteger
Description:

This method divides the value of another field by a constant, storing the result in the current field. An error will be
displayed and a result of -1 returned if the divisor is zero.

Parameters:

[Required] Field "Field"

[Required] Int64 "Constant value to divide by"

Example:

Field quotient (Fixed 2) RETRIEVE (DivideFieldByInteger dividend 8) (Decimal) "Result"

E.10.12 DivideInteger
Description:

This method divides the current field value by an integer constant, storing the result in the current field. An error
will be displayed and a result of -1 returned if the divisor is zero.

Parameters:

[Required] Int64 "Constant value to divide by"

Example:

TELEDYNE LECROY Appendix E: Method Reference

221 DecoderScript ReferenceManual and User Guide

Field quotient (Fixed 2) RETRIEVE (DivideInteger 16) (Decimal) "Result"

E.10.13 DivideIntegerByField
Description:

This method divides a constant by the value of another field, storing the result in the current field. An error will be
displayed and a result of -1 returned if the divisor is zero.

Parameters:

[Required] Int64 "Constant value"

[Required] Field "Field to divide by"

Example:

Field quotient (Fixed 2) RETRIEVE (DivideIntegerByField 24 divisor) (Decimal) "Result"

E.10.14 FromFlag
Description:

This method returns a single "data related flag" selected by flag number. The flags are numbered 0 to 31.

Parameters:

[Required] List "Flag number"

List values: 0

1

2

3

…

30

31

Example:

FIELD drf_flag (Fixed 0) RETRIEVE (FromFlag 15) (Hex) SUPPRESS_DETAIL

E.10.15 FromFlags
Description:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 222

This method returns the 32 "data related flags" packed into a 32 bit value. Flag number 0 is the least significant bit,
flag number 31 is the most significant bit.

Parameters:

None

Example:

FIELD fcs_flag (Fixed 0) RETRIEVE (FromFlags) ALSO (AndMask 0x00000100) (Hex) SUPPRESS_
DETAIL

E.10.16 IndexedPersistentField
Description:

This method retrieves a field stored previously by a StoreIndexedPersistentField method. This method requires
the name of the inter-frame data to retrieve, and a field giving the index to use. See the description of
StoreIndexedPersistentField for a full explanation of how this works.

Parameters:

[Required] StatiName "Inter-frame data name"

[Required] Field "Field that contains the index"

Example:

RETRIEVE (IndexedPersistentField usb_type_with_address previous_frame_address)

E.10.17 IndexedPersistentFieldAndDelete
Description:

This method retrieves a field stored previously by a StoreIndexedPersistentField method. This method requires
the name of the inter-frame data to retrieve, and a field giving the index to use. See the description of
StoreIndexedPersistentField for a full explanation of how this works.

Parameters:

[Required] StatidName "Inter-frame data name"

[Required] Field "Field that contains the index"

Example:

FIELD request_class (Fixed 0) IF (IndexedPersistentStaticExists cls sender_context) RETRIEVE
(IndexedPersistentFieldAndDelete cls sender_context) (Hex) "(Request Class)"

TELEDYNE LECROY Appendix E: Method Reference

223 DecoderScript ReferenceManual and User Guide

E.10.18 IntraframeField
Description:

IntraframeField method retrieves a field stored previously by the StoreIntraframeField method. If the value is
unavailable because the stored field hasn't been encountered in this frame, an error is returned saying so.

This method requires the name of the intra-frame data to retrieve. The syntax is:

RETRIEVE (IntraframeField intra_frame_data_name).

Parameters:

[Required] StaticName "Intra-frame data name"

Example:

FIELD piconet (Fixed 0) RETRIEVE (IntraframeField piconet) (Decimal) SUPPRESS_DETAIL

E.10.19 ModuloInteger
Description:

This method calculates the modulus of another field with respect to an integer constant and stores the result in
the current field.

Parameters:

[Required] Int64 "Constant value to divide by to calculate modulus (divisor)"

Example:

Example: Field modulo_value (Fixed 0) RETRIEVE (StoreInteger 256) ALSO (ModuloInteger 7)
(Decimal) SUPPRESS_DETAIL

E.10.20 ModuloField
Description:

This method calculates the modulus by dividing the current field value by the value of another field and stores the
result in the current field.

Parameters:

[Required] Filed "Field to divide by to calculate modulus (divisor)"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 224

Example:

Field modulo_value (Fixed 0) RETRIEVE (StoreInteger 256) ALSO (ModuloField modulo_divisor)
(Decimal) SUPPRESS_DETAIL

E.10.21 ModuloFieldByField
Description:

This method calculates the modulus by dividing the value of the first field by the second field and stores the result
in the current field.

Parameters:

[Required] Field "First Field (quotient)"

[Required] Field "Second Field (divisor)"

Example:

Field modulo_value (Fixed 0) RETRIEVE (StoreField modulo_quotient) ALSO (ModuloFieldByField
modulo_quotient modulo_divisor) (Decimal) SUPPRESS_DETAIL

E.10.22 ModuloFieldByInterger
Description:

This method calculates the modulus by dividing the value of another field by a constant integer and stores the
result in the current field.

Parameters:

[Required] Field "Field (quotient)"

[Required] Int64 "Constant value to divide by to calculate modulus (divisor)"

Example:

Field modulo_value (Fixed 0) RETRIEVE (StoreField modulo_quotient) ALSO (ModuloFieldByInteger
modulo_quotient 11) (Decimal) SUPPRESS_DETAIL

E.10.23 ModuloIntergerByField
Description:

This method calculates the modulus by dividing a constant by the value of another field and store the result in the
current field.

TELEDYNE LECROY Appendix E: Method Reference

225 DecoderScript ReferenceManual and User Guide

PARAM "Constant value" int64

PARAM "Field to divide by to calculate modulus" field

Parameters:

[Required] Int64 "Constant value (quotient)"

[Required] Field "Field (divisor)"

Example:

Field modulo_value (Fixed 0) RETRIEVE (StoreInteger 124) ALSO (ModuloIntegerByField 124 modulo_
divisor) (Decimal) SUPPRESS_DETAIL

E.10.24 MultiplyField
Description:

This method multiplies the current field value by the value of another field.

Parameters:

[Required] Field "Field to multiply by"

Example:

FIELD group_length (Fixed 4) RETRIEVE (MultiplyField num_groups) (Decimal) "Total segment length"

E.10.25 MultiplyFieldByField
Description:

This method Multiplies the values of two fields, storing the result in the current field.

Parameters:

[Required] Field "First field"

[Required] Field "Second field"

Example:

FIELD total_length (Fixed 0) RETRIEVE (MultiplyFieldByField num_groups group_length) (Decimal)
"Total segment length"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 226

E.10.26 MultiplyFieldByInteger
Description:

This method multiplies the value of another field by a constant, storing the result in the current field.

Parameters:

[Required] Filed "Field"

[Required] Int64 "Constant value tomultiply by"

Example:

FIELD total_length (Fixed 4) RETRIEVE (MultiplyFieldByInteger number_groups 24) (Decimal) "Total
segment length"

E.10.27 MultiplyInteger
Description:

This method multiplies the current field value by an integer constant.

Parameters:

[Required] Int64 "Constant value tomultiply by"

Example:

FIELD group_length (Fixed 4) RETRIEVE (MultiplyInteger 6) (Decimal) "Total segment length"

E.10.28 MultipyIntergerByField
Description:

This method multiplies a constant by the value of another field, storing the result in the current field.

Parameters:

[Required] Int64 "Constant value"

[Required] Field "Field to multiply by"

Example:

FIELD group_length (Fixed 4) RETRIEVE (MultiplyIntegerByField 24 num_groups) (Decimal) "Total
segment length"

TELEDYNE LECROY Appendix E: Method Reference

227 DecoderScript ReferenceManual and User Guide

E.10.29 OrMask
Description:

This method performs a bit-wise inclusive OR operation with the field value and a given mask. The single
parameter is the mask, which can be up to 64 bits (8 bytes) long.

A bit-wise inclusive OR compares each bit in the field value with the corresponding bit in the mask. If either bit is
1, the result is 1. If both bits are 1, the result is 1. Otherwise the result is 0.

Parameters:

[Required] Int64 "Mask to apply to data"

Example:

If a byte field contained 0x77 and a RETRIEVE was performed using (OrMask 0xF0), the result would be 0xF7

E.10.30 PersistentField
Description:

This method retrieves a field stored previously by a StorePersistentField method. When using this method, the
first item after the method name must be the name of the inter-frame data in which the field was stored.

Parameters:

[Required] StaticName "Inter-frame data name"

Example:

To continue the example used in the StorePersistentField method description, if you wanted to retrieve the value,
you would use this syntax:

FIELD retrieve_fieldname (Fixed 0 Bits) RETRIEVE (PersistentField KeepThisData) (Decimal) "Value of
Persistant Field"

E.10.31 ReplaceWithExtraData
Description:

ReplaceWithExtraData method looks up the value of the current field in the table specified in the parameter, and
then replaces the value of the current field with the extra data from the table. If the table entry does not have
extra data, zero is returned. Usually used in connection with the STORE keyword.

For example, assume a protocol has a field where the value maps to another value indicating a size. The method
allows you to put the actual size in the field, where it can be used for other purposes.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 228

[Required] Table "Which table"

Example:

In this example, storing the retrieved value under a different field name allows you to display the correct string
from the table, and still use the correct value for the "next_field" field.

TABLE sizes

{1 "1 Bit" "1 Bit" 1}
{2 "4 Bits" "4 Bits" 4}
{3 "1 Byte" "1 Byte" 8}

ENDTABLE
FIELD size_lookup (Fixed 1 Byte) (Table sizes) "Next Field Size" STORE field_size RETRIEVE

(ReplaceWithExtraData sizes)
FIELD next_field (FromField Bits field_size) (Decimal) "Number"

E.10.32 ShiftLeft
Description:

ShiftLeft method shifts the data to the left by the number of bits specified in the parameter. If a field contained
the value 0x7f and a RETRIEVE (ShiftLeft 4) was done, the resulting value would be 0xf0.

Parameters:

[Required] Int "Number of bits to shift"

Example:

FIELD service_key (Fixed 0) RETRIEVE (AddIntegerToField 0xFFFF instance_id) ALSO (ShiftLeft 8)
(Hex) SUPPRESS_DETAIL

E.10.33 ShiftRight
Description:

ShiftRight method shifts the data to the right by the number of bits specified in the parameter. If a field contained
the value 0x7F and a RETRIEVE (ShiftRight 4) was done, the resulting value would be 0x07.

Parameters:

[Required] Int "Number of bits to shift"

Example:

FIELD minutes (Fixed 2) RETRIEVE (AndMask 0x07E0) ALSO (ShiftRight 5) (Decimal) "Minutes"

TELEDYNE LECROY Appendix E: Method Reference

229 DecoderScript ReferenceManual and User Guide

E.10.34 SignExtension
Description:

SignExtension method extends the sign bit to 64 bits. This allows you to treat a field of any size between 1 and 63
bits as a signed integer rather than an unsigned one. The "Number" parameter indicates the number of bits in the
value; usually this is the same as the field size. It must be explicitly provided in case a RETRIEVE alters the field.

Parameters:

[Required] Int "Number of bits in value"

Example:

FIELD int_value (Fixed 1) RETRIEVE (SignExtension 8) (Decimal) "Test Attribute"

E.10.35 SplitField
Description:

This method removes some bits from the middle of the current field and moves the left part of the field over to
the remaining bits on the right. The first parameter is the number of bits on the right side to keep, and the second
parameter is the number of bits in the middle to delete.

If the raw data in a 16-bit field is 0x5A8F (binary 010110101000111) and it is retrieved using (SplitField 7 1), the
low 7 bits are preserved, the high bit of the low byte is discarded and the remaining bits are right-shifted one
place to produce a result of 0x2D0F (binary 00101101 00001111).

Parameters:

[Required] Int "Number of bits on right side to preserve"

[Required] Int "Number of bits to delete"

Example:

FIELD parity (Fixed 5) RETRIEVE (SplitField 2 6) (Hex) "Parity"

E.10.36 StoreField
Description:

This method stores the value of another field to the current field.

Parameters:

[Required] Field "Field to store"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 230

Example:

FIELD increment_address (Fixed 0) RETRIEVE (StoreField retrieved_addr_var) ALSO (AddInteger 1)
(Hex) "New Address"

E.10.37 StoreIndexedPersistentField
Description:

This method stores the current field value to an inter-frame data array, indexed by the value in the field specified
in the parameter. This method is similar to the StorePersistentField method in that the data is saved forever rather
than just for the length of the layer or frame. The difference between this method and StorePersistentField is that
you can store multiple values to the same inter-frame data name.

Parameters:

[Required] StaticName "Inter-frame data name"

[Required] Field "Field that contains the index"

Example:

Say you have a master device talking to multiple slaves. The master sends a Read command to Slave 1, aWrite
Configuration command to Slave 4, and a Read Configuration command to slave 7. The command frames contain
both the command and the slave the command is directed to. The responses from the slaves, however, don't
reference the command, though they do say which slave the response is from. You can't correctly decode the
responses unless you can match them up to the commands.

You can do this if you save the command value indexed by the slave number. The command part of the decoder
might look like this:

FIELD slave_number (Fixed 1) (Decimal) "Slave Number"
FIELD command_code (Fixed 1) RETRIEVE (StoreIndexedPersistentField command slave_number)

(Hex) "Command"

The response section might look like this:

FIELD slave_number (Fixed 1) (Decimal) "Slave Number"
FIELD retrieved_command_code (Fixed 0) RETRIEVE (IndexedPersistentField command slave_

number) SUPPRESS_DETAIL
BRANCH (FromTable command_code retrieved_command_code)

Using the above example, after the first command frame is decoded, the array holds:

1 Read

After the second and third command frames are decoded, it holds:

1 Read

4 Write Configuration

7 Read Configuration

TELEDYNE LECROY Appendix E: Method Reference

231 DecoderScript ReferenceManual and User Guide

When a response comes back from Slave 7, the response section of the decoder looks up 7 in the array and
retrieves the value "Read Configuration". It then branches to the Read Configuration section of the decoder.

E.10.38 StoreInteger
Description:

Stores a constant value to the current field.

Parameters:

[Required] Int64 "Constant value to store"

Example:

FIELD dummy (Fixed 0) RETRIEVE (StoreInteger 255) (decimal) "Variable"

E.10.39 StoreIntraframeField
Description:

StoreIntraframeField method saves the value of the current field for the duration of the current frame. This
makes the field's value available to other layers within the frame (i.e. other decoders used in the frame). When
the decoding of the frame is finished, the value is cleared prior to decoding the next frame. You can store as many
fields as you wish, provided you use a different name for each one.

The method doesn't take a parameter, but you do need to specify a name to store the value under. The syntax is:

RETRIEVE (StoreIntraframeField intra_frame_data_name).

Parameters:

[Required] StaticName "Intra-frame data name"

Example:

FIELD src_addr (Fixed 4 Byte) RETRIEVE (StoreIntraframeField source_ip_address) (IPAddress) IN_
SUMMARY Source "Source Address" TAG (Tag "Addr:IP:Src")

E.10.40 StorePersistentField
Description:

StorePersistentField method saves the value of the current field in the specified inter-frame data. The item after
the method name must be the name of the inter-frame data in which the field is to be stored. Data is retrieved
using the PersistentField method.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 232

[Required] StaticName "Inter-frame data name"

Example:

GROUP request IF (MatchTableData code_table req_or_resp 1)
FIELD code (Fixed 1) RETRIEVE (StorePersistentField KeepThisCode) (Decimal) "Code"
GROUP response IF (MatchTableData code_table req_or_resp 2)
FIELD response_code (Fixed 7 Bits) (TABLE response_code_table) IN_SUMMARY "Resp Code" 100 "

Response Code"
FIELD retrieved_code (Fixed 0 bits) RETRIEVE (PersistentField KeepThisCode) (Hex) "Retrieved

Code"
FIELD no_response (Fixed 1 Byte) IF (FieldIsBetween 0x00 0x1F retrieved_code) (Constant "No

Response Required") "Response"
FIELD resp_req (Fixed 2 Bytes) IF NOT (FieldIsBetween 0x00 0x1F retrieved_code) (Table resp_code_

table) "Response"

E.10.41 SubtractField
Description:

This method subtracts the value of another field from the value of the current field, storing the result in the
current field

Parameters:

[Required] Field "Field to subtract"

Example:

FIELD calculation (Fixed 0) RETRIEVE (StoreField BufferLength) also (SubtractField descriptor_length)
(Decimal) SUPPRESS_DETAIL

E.10.42 SubtractFieldMinusField
Description:

This method subtracts the value of the second field from the value of the first field, storing the result in the
current field.

Parameters:

[Required] Field "First field"

[Required] Field "Second field"

Example:

TELEDYNE LECROY Appendix E: Method Reference

233 DecoderScript ReferenceManual and User Guide

FIELD data_len (Fixed 0) RETRIEVE (SubtractFieldMinusField end_data begin_data) (Decimal)
SUPPRESS_DETAIL

E.10.43 SubtractFieldMinusInteger
Description:

SubtractFieldMinusInteger method subtracts a constant from the value of another field, storing the result in the
current field.

Parameters:

[Required] Field "Field value"

[Required] Int64 "Constant value to subtract"

Example:

FIELD number_bytes (Fixed 0) RETRIEVE (SubtractFieldMinusInteger structure_length 2) (Decimal)
SUPPRESS_DETAIL

E.10.44 SubtractInterger
Description:

This method subtracts an integer constant from the value of the current field, storing the result in the current
field.

Parameters:

[Required] Int64 "Constant value to subtract"

Example:

FIELD data_length (Fixed 0) RETRIEVE (StoreField tlvlength) ALSO (SubtractInteger 1) (Decimal)
SUPPRESS_DETAIL

E.10.45 SubtractIntegerMinusField
Description:

This method subtracts the value of another field from a constant, storing the result in the current field.

Parameters:

[Required] Int64 "Constant value"

[Required] Field "Field to subtract"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 234

Example:

FIELD calculate_reserved_length (Fixed 0) RETRIEVE (SubtractIntegerMinusField 25 identifier_length)
(Decimal) "Reserved length"

TELEDYNE LECROY Appendix E: Method Reference

235 DecoderScript ReferenceManual and User Guide

E.11 Group: SIZE

E.11.1 ArrayOf
Description:

This field contains an array of identical bytes, terminated by the first byte that is different.

Parameters:

[Required] Int64 "Byte that repeats"

Example:

FIELD start_flag (ArrayOf 0x7e) (StringOfHex) "Start Flag"

E.11.2 Bit
Description:

Bit methods returns a size of 1.

Parameters:

None

Example:

FIELD over_flow_bit (Fixed 1 Bit) (Binary) "Overflow Bit"

E.11.3 Byte
Description:

Byte methods returns a size of 8 (8 bits).

Parameters:

None

Example:

FIELD info_state (Fixed 1 Byte) (Decimal) "Info State"

E.11.4 Fixed
Description:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 236

Fixed methods return the number of bits specified. Two parameters are used, a count and a unit specifier. The
latter may be any of:

"Bit" or "Bits" = 1-bit units

"Nibble" or "Nibbles" = 4-bit units

"Byte" or "Bytes" = 8-bit units

"Octet" or "Octets" = 8-bit units

"Word" or "Words" = 16-bit units

"Dword" or "Dwords" = 32-bit units (double words)

"Qword" or "Qwords" = 64-bit units (quad words)

"Times" - used in REPEAT COUNT (Fixed 3 Times) constructions. Equivalent of saying

(Fixed 3 Bits) but is more clear in the context of a REPEAT

The singular and plural forms are distinguished only for readability; for instance, the method will return 8 whether
you write "(Fixed 1 Byte)" or "(Fixed 1 Bytes)". The units parameter is optional and, if omitted, will default to
"Bytes".

Parameters:

[Required] Int "Number (in units)"

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

TELEDYNE LECROY Appendix E: Method Reference

237 DecoderScript ReferenceManual and User Guide

Example:

FIELD info_num (Fixed 4 Bytes) (Decimal) "Info Number"

E.11.5 FixedUpTo
Description:

FixedUpTo methods return the fixed value given in the first parameter "Number", unless that would put the
pointer past the absolute end point given by the "Length field" and "Offset" parameters. The absolute end point is
found by starting immediately after the field in "Length field", adding the value of "Length field" and subtracting
the value of "Offset". If the value in "Number" puts the pointer past the absolute end point, the size is truncated to
the absolute end point.

Parameters:

[Required] Int "Number (in units)"

[Required] Field "Length field"

[Optional] Int "Offset: (Default value: 0)

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD length (Fixed 1 Byte) (Decimal) "Length"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 238

FIELD address (FixedUpTo 6 length 5) (Hex) "Address"

Assume the value in "length" is 10. Starting after the length field, the absolute end point is 10-5=5 bytes from the
length field. The address field, which is right after the length field, is 6 bytes long, except that this is 1byte past the
absolute end point. Instead of being set at 6 bytes, the size of "address" is set to 5. If the value of "length" was 14,
the absolute end point would be 14-5 =9 bytes from the end of "length". In this case, the size of the address field
would be set to 6, because this does not go past the absolute end point.

This method handles cases where bad data may cause a group to overflow, which is particularly a problem with
repeated groups.

E.11.6 FromExtraData
Description:

This method derives a size from the extra data in a table, referenced by the value in a field that has already been
processed. Three parameters are used, the first two being required. The first parameter is the table that contains
the extra data, the second parameter is the field that will be used to index the table, the optional third parameter
is the unit, that is one of the terms listed for the Fixed method ("Bits", "Bytes", etc.). The default is "Bytes".

Parameters:

[Required] Table "Which table"

[Required] Field "Which field"

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

TELEDYNE LECROY Appendix E: Method Reference

239 DecoderScript ReferenceManual and User Guide

Example:

FIELD indices (FromExtraData not_qcode_11 resp_index_size Bits) (Decimal) "Index"

E.11.7 FromField
Description:

FromField method derives a size from the value in a field that has already been processed. Three parameters are
used, the first two being required. The first parameter is the unit, that is one of the terms listed for the Fixed
method ("Bits", "Bytes", etc.). The second is the name of the field that contains the size. The optional third
parameter is an adjustment, a (possibly negative) integer that is subtracted from the field value.

Suppose the field "data_count" contains the value 6. (FromField Words data_count 1) would extract the value 6,
subtract 1, multiply by 16 (remember all Size methods return the length in bits), and return the result 80.

Parameters:

[Required] List "Units"

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

[Required] Field "Which field"

[Optional] Int "Offset (in units)" (Default value: 0)

Example:

FIELD var_id (FromField Bytes var_len) (StringOfAscii 20) IN_SUMMARY ID 50 ID

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 240

E.11.8 MinFieldOrEndOfLayer
Description:

This method derives a size from the value in a field that has already been processed. Three parameters are used,
the first two being required. The first parameter is the unit, that is one of the terms listed for the Fixed method
("Bits", "Bytes", etc.). The second is the name of the field that contains the size. The optional third parameter is an
adjustment, a (possibly negative) integer that is subtracted from the field value.

Suppose the field "data_count" contains the value 6. (FromField Words data_count 1) would extract the value 6,
subtract 1, multiply by 16 (remember all Size methods return the length in bits), and return the result 80.

This will not exceed the end of the layer.

Parameters:

[Required] List "Units"

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

[Required] Field "Which field"

[Optional] Int "Offset (in units)" (Default value: 0)

Example:

FIELD type_value (MinFieldOrEndOfLayer Bytes two_byte_length 3) (StringOfASCII 30) "Type"

TELEDYNE LECROY Appendix E: Method Reference

241 DecoderScript ReferenceManual and User Guide

E.11.9 OddTerminated
Description:

OddTerminated method counts bytes up to and including the first odd byte found.

Parameters:

None

Example:

FIELD protocol (OddTerminated) (Decimal) SUPPRESS_DETAIL NO_MOVE

E.11.10 OneToken
Description:

OneToken method find the first space, tab, CR, LF, or null character. The returned size is never larger than the
maximum passed in. If no maximum is given, the maximum returned size is assumed to be the size of the rest of
the frame.

Parameters:

[Optional] Int "Maximum size (in bytes)" (Default value: -1)

Example:

FIELD at_normal_type (OneToken) (Table at_normal_type) "Command"

E.11.11 RelativeFromField
Description:

This method figures out how much data has been consumed between the start of the field in the "Field that
contains length" parameter and the current bit position. Note that this method is inclusive, which means if you
need to find out how much data has been consumed not including the data in the first parameter field, you will
need to include the size of that field as the second parameter.

RelativeFromField is useful when decoding protocols that carry multiple objects or functions in a frame and there
may be extra data at the end of an object that you want to put into a field but you don't know how much there is.
For example, each object starts with a 1 byte length field. There are variable length fields between the length field
and the current bit position where you want to put your data field. You can use this construction to find out the
correct size for the field:

FIELD consume_data (RelativeFromField length) IF (MoreBytesInSegment length) (StringOfHex 64)
"Data"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 242

Usually used in conjunction with the Boolean method MoreByteInSegment so that the field doesn't show up if
there isn't any extra data.

Parameters:

[Required] Field "Field that contains length"

[Required] Int "Size of Parameter Field in Bytes" (Default value: 0)

Example:

FIELD unknown_or_undecoded_bytes (RelativeFromField length 2) IF (MoreBytesToDecode length 2)
(StringOfHex) "Unknown Bytes"

E.11.12 String
Description:

String method is provided for sizing null-terminated ASCII strings. The method searches forward for a null
character and returns the size of the string including the null. If the search reaches the end of the layer without
encountering a null then no error is given and the field is sized to the layer's end.

Parameters:

None

Example:

FIELD password (String) (StringOfASCII) "Password"

E.11.13 ToEndOfLayer
Description:

This method return the number of bits from the pointer to the end of the layer, excluding the number of bytes in
the "Bytes" parameter. For example, (ToEndOfLayer 2) would return the number of bits left in the frame minus
16. This method is useful when a field subsumes all data left in the layer except for a CRC or checksum at the end.
The parameter may be omitted in which case no adjustment is made.

Parameters:

[Optional] Int "Bytes from end" (Default value: 0)

Example:

FIELD bus_idle (ToEndOfLayer) (Binary) SUPPRESS_DETAIL

TELEDYNE LECROY Appendix E: Method Reference

243 DecoderScript ReferenceManual and User Guide

E.11.14 ToTerminatingValue
Description:

ToTerminatingValue method scans ahead for the value specified in the "Value" parameter, and returns the
number of bits between the value and the current bit. If the terminating value is not found, the size is set to the
number of bytes remaining in the layer. The "Inclusive/Exclusive" parameter specifies whether to include the
terminating value in the count or not. Thus (ToTerminatingValue Inclusive 0xFF) would count bytes until one was
found containing 0xFF and return a count that included the 0xFF. If the pointer is not at a byte boundary when the
scan starts, then the pointer is moved to the beginning of the next byte and the scan starts from there.

Parameters:

[Required] List "Inclusive/Exclusive"

List values: Inclusive

Exclusive

[Required] Int64 "Value that signifies the start of the next field or
end of this

Example:

FIELD s_reg (ToTerminatingValue Exclusive 0x3d) (Table s_reg) "S-register"

E.11.15 UnicodeString
Description:

Determines the length of a string of Unicode characters by scanning alternate bytes until it finds one that is NULL.
The null byte is included in the count. Note that the data order specified for the decoder is not used here; the
comparison is performed in host data order. For example, if the pattern at the pointer is (in hex): 00 48 00 45 00
4C 00 4C 00 50 00 00 … then (UnicodeString) would find 6 characters, 12 bytes and return 96.

Parameters:

None

Example:

FIELD file_name (UnicodeString) IF (FieldIs EqualTo 1 unicode) (StringOfUnicode) "Original File Name"

E.11.16 UpTo
Description:

This method returns the number of bits specified. Two parameters are used, a count and a unit specifier. The
latter may be any of:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 244

"Bit" or "Bits" = 1-bit units

"Nibble" or "Nibbles" = 4-bit units

"Byte" or "Bytes" = 8-bit units

"Octet" or "Octets" = 8-bit units

"Word" or "Words" = 16-bit units

"Dword" or "Dwords" = 32-bit units (double words)

"Qword" or "Qwords" = 64-bit units (quad words)

The singular and plural forms are distinguished only for readability; for instance, the method will return 8 whether
you write "(Fixed 1 Byte)" or "(Fixed 1 Bytes)". The units parameter is optional and, if omitted, will default to
"Bytes".

This is the same as the "Fixed" method, except that if there are not enough bits remaining in the frame, the total
number of bits remaining is used.

Parameters:

[Required] Int "Number (in units)"

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

TELEDYNE LECROY Appendix E: Method Reference

245 DecoderScript ReferenceManual and User Guide

FIELD peek_self_contained (UpTo 4) IF (FieldIs EqualTo 1 is_first) (Hex) SUPPRESS_DETAIL NO_
MOVE

E.11.17 Zero
Description:

This method returns a size of 0.

Parameters:

None

Example:

FIELD asdu_addr_size (Zero) RETRIEVE (StoreField SizeOfASDUAddressFieldInBytes) ALSO
(AddInteger 1) (Hex) SUPPRESS_DETAIL

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 246

E.12 Group: START_BIT

E.12.1 FromEnd
Description:

Moves the pointer to a given offset from the end of the layer. The first parameter is the number of units to move
and the second is the unit (see the Fixed Size Method). Thus (FromEnd 4 Bits) would move the pointer 4 bits prior
to the end of the layer while (FromEnd 4 Bytes) would move the pointer 32 bits from the end of the layer. Both
parameters are optional and, if omitted, will default to zero and Bytes.

Parameters:

[Optional] Int "Offset" (Default value: 0)

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD fcs START_BIT (FromEnd 1 Byte) (Fixed 1) (Hex) "FCS" NO_MOVE VERIFY (RFCommCrc
crc_end_not_uih)

E.12.2 FromEndSizeFromField
Description:

TELEDYNE LECROY Appendix E: Method Reference

247 DecoderScript ReferenceManual and User Guide

Moves the pointer to a given offset from the end of the layer, where the size of the offset is provided in another
field. The first parameter is the field which contains the value of the offset and the second is the unit (see the
Fixed Size Method). Thus (FromEndSizeFromField size_of_crc Bytes) would get the value stored in the field size_
of_crc and move the pointer that many bytes prior to the end of the layer. The second parameter is optional and,
if omitted, will default to Bytes.

Parameters:

[Required] Filed "Field that contains offset"

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD crc_value START_BIT (FromEndSizeFromField size_of_crc Bytes) (FromField Bytes size_of_
crc) "CRC"

E.12.3 FromStart
Description:

Moves the pointer to a given offset from the start of the layer. Parameters are the same as for the FromEnd
method

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 248

[Optional] Int "Offset" (Default value: 0)

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD can_id START_BIT (FromStart 5 Bits) (Fixed 11 Bits) (Hex) "CAN ID"

E.12.4 Move
Description:

Moves the pointer the requested number of units from the current position. Use negative numbers to move
backwards.

The first parameter is the number of units to move and the second is the unit (as listed for the Fixed Size Method).
Thus, (Move -1 byte) would move the pointer back one byte.

Parameters:

[Required] Int "Amount to move"

TELEDYNE LECROY Appendix E: Method Reference

249 DecoderScript ReferenceManual and User Guide

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD CheckOpen START_BIT (Move 5 Bits) (Fixed 3 Bits) (Hex) "SUPPRESS_DETAIL" NO_MOVE

E.12.5 MoveAbsoluteFromField
Description:

This method takes the value in the "Field that contains offset" parameter and starting from the beginning of the
layer, moves the pointer that many bytes plus the number of bytes in the "Additional Offset" parameter. A
positive value in "Offset" moves the pointer forward, while a negative value moves back. An error will be
triggered if the result points outside the frame. This method is useful for ensuring that decoding begins again at
the proper location in case bad data prior in the frame causes trouble in a REPEAT loop or similar construction.

Parameters:

[Required] Field "Field that contains offset"

[Optional] Int "Additional Offset In Bytes" (Default value: 0)

Example:

FIELD DataCrc START_BIT (MoveAbsoluteFromField len 8) (Fixed 2) (Decimal) "CRC"

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 250

E.12.6 MoveRelativeFromField
Description:

This method takes the value in the "Field that contains offset" parameter and starting from that field, moves the
pointer that many bytes plus the number of bytes in the "Additional Offset" parameter. A positive value in "Offset"
moves the pointer forward, while a negative value moves back. An error will be triggered if the result points
outside the frame. This method is useful for ensuring that decoding begins again at the proper location in case bad
data prior in the frame causes trouble in a REPEAT loop or similar construction.

Parameters:

[Required] Field "Field that contains offset"

[Optional] Int "Additional Offset In Bytes" (Default value: 0)

Example:

FIELD file_name START_BIT (MoveRelativeFromField fname_offset) (FromField Bytes name_size)
(StringOfASCII) "File Name"

E.12.7 MoveToField
Description:

This method moves the pointer to the beginning of the field specified. This must be a field that has already been
decoded. MoveToField is handy when you need to process a field twice.

Parameters:

[Required] Field "Field to move to"

Example:

FIELD string_length START_BIT (MoveToField object_variation) (Fixed 1) (Decimal) "Octet String
Length"

E.12.8 MoveToFieldPlusOffset
Description:

This method moves the pointer to the beginning of the first field specified, and then moves forward the number
of bytes in the second field parameter. This must be a field that has already been decoded.

Parameters:

[Required] Field "Field to move to"

TELEDYNE LECROY Appendix E: Method Reference

251 DecoderScript ReferenceManual and User Guide

[Required] Field "Offset beyond that to move in bytes"

Example:

FIELD mr_data START_BIT (MoveToFieldPlusOffset anchor multi_req_offset) (Fixed 16) (StringOfHex)
"Data"

E.12.9 NextByteBoundary
Description:

This method moves the pointer to the beginning of the next byte. If the pointer is already at a byte boundary, it
doesn't move.

Parameters:

None

Example:

FIELD flags START_BIT (NextByteBoundary) (Fixed 1) (Hex) "Flags"

E.12.10 NextWordBoundary
Description:

This method moves the pointer to the next word boundary. If the pointer is already at a word boundary, it doesn't
move.

Parameters:

None

Example:

FIELD pd_unicode START_BIT (NextWordBoundary) (UnicodeString) (StringofUnicode) "Primary
Domain"

E.12.11 PreviousByteBoundary
Description:

This method moves the pointer to the beginning of the current byte. If the pointer is already at a byte boundary, it
doesn't move.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 252

None

Example:

FIELD read_flags_again START_BIT (PreviousByteBoundary) (Fixed 1) (Hex) "Flags"

TELEDYNE LECROY Appendix E: Method Reference

253 DecoderScript ReferenceManual and User Guide

E.13 Group: TAG

E.13.1 TAG
Description:

This method returns the constant string passed to it

Parameters:

[Required] Str "Constant"

Example:

FIELD src_port (Fixed 2) (Table ports) IN_SUMMARY "Source Port""Source Port" TAG (Tag
"Addr:TCP/UDP:Src")

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 254

E.14 Group: VERIFY

E.14.1 Check_Crc802153MacHcs
Description:

Crc802153MacHcs is calculated after reversing the data bits in each byte and X-ORing the result with 0xFFFF after
reversing the bits of the result.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc_802153 (Fixed 2 Bytes) (Hex) "CRC" VERIFY (Check_Crc802153MacHcs 0 0x0000)

E.14.2 Check_CrcCCITTrevDataBytes
Description:

This method calculates the CRC checksum value according to the 16-bit CRC-CCITT specification after reversing all
the data bytes.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 5) (Fixed 4) (Hex) "CRC" VERIFY (Check_CrcCCITTrevDataBytes 0
NoSwap)

TELEDYNE LECROY Appendix E: Method Reference

255 DecoderScript ReferenceManual and User Guide

E.14.3 Check_CrcCRC16
Description:

This method calculates the 16-bit CRC checksum

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 2)(Fixed 2) (Hex) "CRC" VERIFY (Check_CrcCRC16 0)

E.14.4 Check_CrcCRC16Rev
Description:

This method calculates the 16-bit CRC after reversing the data bytes

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 2) (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcCRC16rev 0 0x0000)

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 256

E.14.5 Check_CrcCRC16RevAndInvert
Description:

This method calculates the CRC after reversing and inverting the data bytes.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 2) (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcCRC16RevAndInvert
0)

E.14.6 Check_CrcCRC32
Description:

This method calculates the 32-bit CRC checksum.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD fcs START_BIT (FromEnd 5) (Fixed 4) (Hex) "Frame Check Sequence" VERIFY (Check_
CrcCRC32 0 0xffffffff NoSwap)

TELEDYNE LECROY Appendix E: Method Reference

257 DecoderScript ReferenceManual and User Guide

E.14.7 Check_CrcHDLC
Description:

This method calculates 2-byte CRC value according to the HDLC specification.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 2) (Fixed 2) (Hex) CRC NO_MOVE VERIFY (Check_CrcHDLC)

E.14.8 Check_CrcHDLCerr
Description:

This method calculates the Error checksum value according to the HDLC specification

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD hdlc_crcerr (Fixed 2) (Hex) “HDLC CRC” VERIFY (Check_CrcHDLCerr)

E.14.9 Check_CrcLRC
Description:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 258

This method calculates the Longitudinal Redundancy Check CRC. The method XORs each byte in the layer, starting
with the byte specified in the first parameter. The result is an 8-bit value.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD bcc (Fixed 1) (Hex) "BCC" VERIFY (Check_CrcLRC 1 0)

E.14.10 Check_CrcModBus
Description:

This method calculates a 2-byte CRC value according to the MODBUS protocol specification.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 2) (Fixed 2) (Hex) IN_SUMMARY CRC 40 CRC NO_MOVE VERIFY
(Check_CrcModBus 0 0xffff)

E.14.11 Check_CrcModBus_LRC
Description:

This method calculates a 1-byte LRC value according to the MODBUS protocol specification.

TELEDYNE LECROY Appendix E: Method Reference

259 DecoderScript ReferenceManual and User Guide

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc START_BIT (FromEnd 1 Bytes) (Fixed 1) (Hex) CRC NO_MOVE VERIFY (Check_
CrcModBus_LRC 0 0)

E.14.12 Check_CrcSum
Description:

This method calculates the summed checksum. It adds each byte to the next byte and returns a 2-byte result.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcSum 0 0)

E.14.13 Check_CrcSum1Comp
Description:

This method calculates the CRC by summing the data bytes and taking the 1's complement of the sum.

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 260

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcSum1comp 0)

E.14.14 Check_CrcSum2Comp
Description:

This method calculates the CRC by summing the data bytes and taking the 2's complement of the sum.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcSum2comp 0)

E.14.15 Check_CrcXOR1Comp
Description:

This method calculates the CRC by XORing the data bytes and taking the 1's complement of the XOR-sum.

Parameters:

TELEDYNE LECROY Appendix E: Method Reference

261 DecoderScript ReferenceManual and User Guide

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcXOR1comp 0)

E.14.16 Check_CrcXOR2Comp
Description:

This method calculates the CRC by XORing the data bytes and taking the 2's complement of the sum.

Parameters:

[Required] Int "First byte to include (0=first byte in
layer)"

[Required] Int "Seed"

[Optional] List "Swap Result" (Default value:
NoSwap)

List values: NoSwap

Swap

Example:

FIELD crc (Fixed 2) (Hex) "CRC" VERIFY (Check_CrcXOR2comp 0)

E.14.17 CompareFields
Description:

Returns OK if the statement comparing the field value with the second field value using the operator specified is
true. If the comparison fails, the field value will be displayed in red in the decode pane with the message
[Operator 'Error message'].

Parameters:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 262

[Required] List "Operator"

List Values GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Int64 "Second Field"

[Required] Str "Error message"

Example:

Field current_field (Fixed 2) (Hex) VERIFY (CompareFields LessThanOrEqualTo peek_Int
"connInterval")

If the CompareFields fails then the error message [LessThanOrEqualTo connInterval] will be appended to the
field value.

E.14.18 Fail
Description:

This method always returns an error. It is useful when the decoder takes a path that is always an error

Parameters:

[Required] Str "Error message"

Example:

FIELD status_error (Fixed 2) (Constant "Error") "Status" VERIFY (Fail "Get Status requests should not
be given to Other recipients")

E.14.19 FieldIs
Description:

This method returns OK if the statement comparing the field value with a given constant using the operator
specified is true. If the comparison fails, the field value will be displayed in red in the Decode pane and the
expected value(s) will be displayed next to it. The optional "Output Radix" parameter specifies whether to show
the expected value(s) in decimal or hex.

Parameters:

TELEDYNE LECROY Appendix E: Method Reference

263 DecoderScript ReferenceManual and User Guide

[Required] List "Operator"

List Values GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Int64 "Match value"

[Optional] List "Output radix" Default value: AsDecimal

List values: AsDecimal

AsHex

Example:

Here is a typical example taken from the IP decoder. This serves to check that the version of IP used is at least 4:

FIELD version (Fixed 4 Bits) (TABLE ver_nums) "Version" VERIFY (FieldIs GreaterThanOrEqualTo 4)

E.14.20 FieldIsBetween
Description:

This method returns OK if the value of the current field is between the minimum and maximum values. This
method is inclusive. In other words, if the value of the current field is exactly equal to the value of either the
maximum or minimum, the method returns OK.

Parameters:

[Required] Int65 "Minimum value"

[Required] Int64 "Maximum value"

[Optional] List "Radix for error output" default value: no output

List Values: AsDecimal

AsHex

Example:

GROUP cmdGroup2Explicit IF (FieldIsBetween 2 6 AsDecimal)
If the value being tested is 9, output will be "<2 or >6",

GROUP cmdGroup2Explicit IF (FieldIsBetween 2 6 AsHex)

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 264

If the value being tested is 9, output will be "<0x02 or >0x06".

E.14.21 FieldLengthIs
Description:

This method makes sure that the field length is correct. This is useful for those fields that have variable lengths, but
not all of the lengths are legal. The parameters and functionality are the same as for FieldIs, except that the
method is verifying the length of the field rather than the contents.

Parameters:

[Required] List "Operator"

List Values GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Required] Int64 "Match value"

TELEDYNE LECROY Appendix E: Method Reference

265 DecoderScript ReferenceManual and User Guide

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

[Optional] List "Output radix" Default value: AsDecimal

List values: AsDecimal

AsHex

Example:

FIELD unexpected_data (ToEndOfLayer) IF (MoreBytes) (StringOfHex) "Unexpected Data" VERIFY
(FieldLengthIs EqualTo 0)

E.14.22 HdlcFcs
Description:

This method is used as a Checksum for Async PPP frames.

Parameters:

[Optional] Int "Starting Offset" (Default value: 0)

[Optional] Int "Ending Offset" (Default value: 0)

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 266

Example:

FIELD FCS START_BIT (FromEnd 3) (Fixed 2) (Hex) IN_SUMMARY CRC 50 CRC NO_MOVE
VERIFY (HdlcFcs 1 1)

E.14.23 IsInTable
Description:

IsInTable method returns OK if the value of the current field exists in the specified table and is not the default. This
method is used in the IP decoder to check that the next layer protocol is defined:

Parameters:

[Required] Table "Table"

Example:

FIELD protocol (Fixed 1) (Table protocol) IN_SUMMARY "Protocol" 100 "Protocol" VERIFY (IsInTable
protocol)

E.14.24 IsLengthOfLayer
Description:

This method returns OK if the value in the current field is equal to the length of the layer minus the value of the
"Offset" parameter. This method is handy for verifying the internal size of a layer against the amount of data
collected; the adjustment can be used to exclude a frame check or anything else of the sort.

Parameters:

[Required] List "Operator"

List Values GreaterThan

GreaterThanOrEqualTo

LessThan

LessThanOrEqualTo

EqualTo

NotEqualTo

[Optional] Int "Offset"

TELEDYNE LECROY Appendix E: Method Reference

267 DecoderScript ReferenceManual and User Guide

[Optional] List "Units" (Default value: Bytes)

List values: Bit

Bits

Times

Nibble

Nibbles

Byte

Bytes

Octet

Octets

Word

Words

Dword

Dwords

Qword

Qwords

Example:

FIELD length_of_layer (Fixed 1) (Decimal) "=0 Bytes" VERIFY (IsLengthOfLayer EqualTo 0 Bytes)

E.14.25 MatchTableData
Description:

MatchTableData method returns TRUE if the table data matches the parameter "Value to match". A typical use of
this method is to distinguish various classes of message, for example commands, responses and data.

Parameters:

[Required] Table "Which table"

[Required] Int64 "Value tomatch"

[Optional] Str "Error message"

Example:

Examples of its use can be seen in the HTTP and SMTP decoders. One instance from the latter decoders is:

Appendix E: Method Reference TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 268

TABLE cmd

{ 1 "Send" "Send" 1 }
{ 2 "Receive" "Receive" 1 }
{ 3 "Reserved" "Reserved" 0 }
{ 4 "Set" "Set" 1 }
{ Default "???" "???" 0 }

ENDTABLE
FIELD type (Fixed 4) (Table cmd) "Type" VERIFY (MatchTableData cmd 1 "Unsupported")

This takes the value in the filed "tpe" and looks it up in the table "cmd". Then the table data for that entry is
checked against the constant given I nthe parameter "Value to match." For example, if the value of "type" were 2,
the test would return true because this value matches the "Receive" entry in the table, which matches the 1 given
as the parameter.

E.14.26 TcpChecksum
Description:

This method is the checksum defined in RFC 793 for TCP. See Pg 16-17 for an explanation. Note: If the input field
is 0, then we bypass the check. We assume the field wasn't set.

Parameters:

[Required] Field "IP Source Addr"

[Required] Field "IP Dest Addr"

Example:

FIELD chksum (Fixed 2) (Hex) IN_SUMMARY Checksum "Checksum" VERIFY (TcpChecksum
source_ip dest_ip)

TELEDYNE LECROY Appendix E: Method Reference

269 DecoderScript ReferenceManual and User Guide

Appendix F: Extending Frontline Decoders
This addendum provides practical guidance for using DecoderScript in a real-world situation. Should you have
additional questions please contact Frontline Technical Support.

F.1 Extending Frontline Products

Frontline Test Equipment has a long history of fully supporting all Bluetooth® profiles. Many profiles are supported
before the specifications are even fully written. That support has worked well with BR/EDR but Bluetooth Smart™
is a much faster moving technology. we fully support all profiles being developed through the Bluetooth SIG but
what about proprietary work being done outside the auspices of the governing body?

Frontline offers the developer the ability to extend the Frontline product by using DecoderScript™ . Some
features of this capability are:

l Access to exactly the same development platform used by Frontline for its own decoders.

l A fully developed and easily learned decoder language.

l Ability to extend the decoder language with C++ methods.

l Custom code can be kept proprietary. That is, the custom code lives in its own directory.

l Custom code is "future proof". Proprietary code will automatically load in any new version of Frontline
products.

l DecoderScript code can be used across the full Frontline product line.

F.1.1 Extending Frontline Products

Frontline Test Equipment has a long history of fully supporting all Bluetooth® profiles. Many profiles are supported
before the specifications are even fully written. That support has worked well with BR/EDR but Bluetooth Smart™
is a much faster moving technology. we fully support all profiles being developed through the Bluetooth SIG but
what about proprietary work being done outside the auspices of the governing body?

DecoderScript ReferenceManual and User Guide 270

Frontline offers the developer the ability to extend the Frontline product by using DecoderScript™ . Some
features of this capability are:

l Access to exactly the same development platform used by Frontline for its own decoders.

l A fully developed and easily learned decoder language.

l Ability to extend the decoder language with C++ methods.

l Custom code can be kept proprietary. That is, the custom code lives in its own directory.

l Custom code is "future proof". Proprietary code will automatically load in any new version of Frontline
products.

l DecoderScript code can be used across the full Frontline product line.

F.1.2 Step 1: Open the Hello Bluetooth® capture file in ComProbe analyzer
You can download the capture file from the Frontline website: http://www.fte.com/downloads/CFA/Hello_
Bluetooth.cfa. Save the downloaded file.

Double click on the .cfa file to
open it in an installed ComProbe
analyzer, or you can open the
capture file from the ComProbe
Control Window Filemenu by
clicking onOpen Capture File…. When open, activate the analyzer Frame Displaywith the default panes
active. In the Summary pane, navigate to and select frame “76”. In the Detail pane expand Frame 76 “ATT” branch
to display the “Service UUID”, “Long UUID”.

In Frame 76, a UUID is mapped to the
Hello Bluetooth Service. When the
decoder sees the UUID in the frame, it
consults a table, “GATT_UUIDs”, to see
what it means.

Hello_Bluetooth.cfa in Frame Display

It scans the table and finds the pertinent
row.

TELEDYNE LECROY Appendix F: Extending Frontline Decoders

271 DecoderScript ReferenceManual and User Guide

{ 0x7f000001 "Hello Bluetooth" }

Now it knows that 0x7f000001 means
“Hello Bluetooth”. It is that simple.

But wait, where did "0x7f000001" come
from? More about that later.

The decoder uses three strategies to
recognize a transmitted UUID:

1. For Bluetooth SIG adopted UUIDs, only 16
bits must be transmitted. In that case, the
value is compared against the table.

2. For Bluetooth SIG adopted UUIDs, the full
128-bit UUID can be optionally
transmitted. In that case, extract the

pertinent 16 bits from that 128-bit UUID and use it.

3. For proprietary UUIDs, the whole 128 bits must be transmitted and evaluated. For various reasons, it is
converted to smaller 32-bit value which is used.

This is why we see "0x7f000001". It is a value we created to represent the full 128 bit UUID. For a complete
explanation of how that works, see Handling 128-bit UUIDs.

In frame 94, a UUID is mapped to the User Name characteristic. Here the decoder does exactly the same thing. It
looks up the UUID in the table and finds a text mapping.

{0x7f000002 "User Name" "User Name 0 chHelloBT_UserName}

But there is more in this table entry. It might be necessary to use different text in the ComProbe analyzer Frame
Display Summary and Detail panes, so DecoderScript privides for different fields. The first field is the
Summary pane text and the second field is the Detail pane text. If there is nothing after the Summary pane
text, the decoder will use that text in both the Summary and Detail panes as it did for the service name. Here
the same text is provided in both fields as a place holder for what comes after. The next field, the"0", is for
advanced users and is seldom used. The final field is where things get interesting. This the name of a
DecoderScript GROUP that will becalled to decode this data. More on that field a bit later.

So to summarize what is going on with this table entry:

When we see 0x7f000002, "User Name" will go in the Summary pane, "User Name" will go into the Detail pane
and we do not care about the "0". Finally, when we get some real data associated with this UUID, we will call
chHelloBT_UserName to decode it.

Hello_Bluetooth Capture File in ComProbe Frame Display

Appendix F: Extending Frontline Decoders TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 272

F.1.3 Step 2: Remap the handling of the Hello Bluetooth® Service UUID
Create a file called "Custom Attributes ATT.dh" in the "My Decoders" directory. In it, paste the text below.

TABLE tMyTable APPENDS_AND_OVERWRITES GATT_UUIDs
{ 0x7f000001 "My Service" "My Service" }
ENDTABLE

This simple code is remarkably powerful.

l The ATT decoder is configured to look for a file with this exact name. If it exists, whatever is in this file
becomes part of the ATT decoder. If it does not exist, the decoder does not care. The file must have a specific
name and be in a specific place for this to work.

l Your table may be named anything unique. That is, tMyTable can be whatever you want as long as it does not
conflict with any Frontline table names. ComProbe analyzer will tell you if there is a problem.

l APPENDS_AND_OVERWRITES means that whatever is in your table will replace what is in the Frontline table.

Best practice is to include your company name or initials in your table name which would eliminate any
chance of conflict.

l GATT_UUIDs is the name of the Frontline table.

To summarize what’s happening here, you are
replacing the entry for 0x7f000001 (Hello
Bluetooth) with your own interpretation. Reload
the decoders and you will see that frame 76 now
shows “My Service” instead of "Hello Bluetooth".

F.1.4 Step 3: Remap the handling of the User Name UUID
Add this line to your table:

{0x7f000002 "MyData" "MyData" 0 gMyCharacteristic}

Now you are remapping 0x7f000002 which is the UUID for the User Name characteristic. Remember, you have
provided text for (in order) the Summary Pane and the Detail Pane. We don’t cover the 0 here. Finally, there is
that handler GROUP.

Now add this code to your file below the table.

GROUP gMyCharacteristic
{

FIELD MyCharacteristic (ToEndOfLayer) (StringOfAscii) "MyData"

}

Reload the decoders. You have now taken over complete control of the decoding of the 0x7f000001
characteristic.

At this point, your file should look like this:

TABLE tMyTable APPENDS_AND_OVERWRITES GATT_UUIDs
{ 0x7f000001 "My Service" "My Service" }
{ 0x7f000002 "MyData" "MyData" 0 gMyCharacteristic }
ENDTABLE

TELEDYNE LECROY Appendix F: Extending Frontline Decoders

273 DecoderScript ReferenceManual and User Guide

GROUP gMyCharacteristic
{

FIELD MyCharacteristic (ToEndOfLayer) (StringOfAscii) "MyData"

}

F.1.5 Where can we go from here?
Frontline DecoderScript is a fully functional language for creating custom decoders or for modifying existing
decoders. With DecoderScript you can expand and customize the functionality of your ComProbe protocol
analyzer.

To complete your extension of the ATT decoder, you may want to add your own error codes. Once you know the
name of the table, you are free to do whatever you need. In the sample table below, you can see that we have
added an entirely new error code for 0xb0. We have also overwritten the 0xfd error code to flag it as Deprecated
for our particular product.

TABLE tMyErrors APPENDS_AND_OVERWRITES error_code

{0xb0 “Some text I want to display”}
{ 0xfd "(Deprecated) Client Characteristic Configuration Improperly Configured for this Service" }

ENDTABLE

Your next step is to customize and enhance the decoding of your data to fit your unique needs. As always,
Frontline Technical Support is standing by to help you.

F.2 Handling 128-bit UUIDs
In ATT, UUIDs come in two sizes: 16 bit and 128 bit. The Bluetooth® SIG uses a ‘Base UUID’.

0000xxxx-0000-1000-8000-00805F9B34FB

The only part that changes is the second double-word where the xxxx as shown above. Generally the SIG adopted
profiles transmit only 16 bit UUIDs. Default processing in ComProbe software is to extract 16 bits from any 128 bit
UUID and match to the GATT_UUIDs table.

If your 128 bit UUIDs are unique in those 16 bits, you can just extract those bits and enter them as above. But
there is some risk to that. If the SIG uses your 16 bit value, you will have a conflict with the SIG. If your UUIDs don’t
differ in those 16 bits, you have an internal conflict. DecoderScript cannot perform logic on any value larger than
64 bits so simply entering the full UUID is not possible. Trying to do two 64 bit comparisons is unworkable.

Fortunately, Frontline has a solution.

1. Create a text file in your ‘My Decoders’ directory and name it “ATT_Custom_LongUUIDs.ini”. It MUST be in
the‘My Decoders̕ directory and the name MUSTmatch. The content of that file should look like this:

[Long UUIDs]
; HELLO BLUETOOTH
b8d02d81-6329-ef96-8a4d-55b376d8b25a = 0x7f000001 // Service
5a50528d-e5ba-4620-90ac-33e5b913684c = 0x7f000002 // Characteristic Use Name

There must be a section called [Long UUIDs].

The first field is the long UUID.

Appendix F: Extending Frontline Decoders TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 274

l You may enter the bytes as transmitted or in reverse order.

l You may include dashes.

l You can use the // comment

l Lines beginning with ";" are ignored.

The second field is one you choose. This is the number you will add to GATT_UUIDs.

l Make your number greater than 16 bits (4 hex digits). This ensures that your value cannot conflict with
SIG UUIDs.

l No negative numbers. Note the 0x7F in the code above. That puts a "0" in the high bit and ensures a
positive number.

2. When you have created ATT_Custom_LongUUIDs.ini, you are ready to use your numbers in GATT_UUIDs.
Note that the 0x7f000001 in GATT_UUIDs corresponds to the mapping in the ATT_Custom_LongUUIDs.ini

TABLE tMyTable APPENDS_AND_OVERWRITES GATT_UUIDs
// Hello Bluetooth Service
{ 0x7f000001 "Hello Bluetooth" }
{ 0x7f000002 "User Name" "User Name" 0 chHelloBT_UserName }
ENDTABLE

Walking through what happens: When we receive a long UUID, we check the LongUUID table first. We check for
the UUID both in transmitted order and reverse order. If there is a mapping to a 32 bit number, we use it. If there
is no mapping, we extract the second doubleword and use that.

TELEDYNE LECROY Appendix F: Extending Frontline Decoders

275 DecoderScript ReferenceManual and User Guide

F.3 Case Study: Extending Frontline ATT Decoder for a Fixed Configuration
Service

F.3.1 Background
Normally, services in ATT are discovered so that the configuration of the database can be as flexible as possible. In
the ATT world, there are rules but freedom generally reigns supreme. The price we pay for this flexibility is that
the database must be discovered.

Consider the following database: Normally, it would take a number of transactions between devices to establish
these three entities because the Characteristic doesn’t have to be at handle 11

Handle Contents
10 Service UUID

11 Characteristic UUID

12 Value UUID

The database could look like this:

Handle Contents
65 Service UUID

111 Characteristic UUID

212 Value UUID

But what if, when we designed the database, we also specify the handles? We would declare the Service UUID to
be the ‘base handle’. Then all other handles would be offset from that base handle.

Handle Contents
<base> Service UUID

<base +1> Characteristic UUID

<base +2> Value UUID

Now there is no need for discovery at all, other than to determine the base handle. Once that is known the rest of
the handles are also known. Even discovering the service can be avoided by using the ADV_IND PDU. The
specification allows for ‘additional data’. This additional data could contain the base handle.

F.3.2 Problem:
This minimalist approach means that the very first ATT frame in a conversation could be the exchange of
meaningful information instead of some form of discovery. It also means that the Frontline sniffer is deprived of
essential information for decoding that meaningful information. The Frontline decoders must be told how to
decode the characteristics or all you will get is raw hex data.

F.3.3 Solution:
The Frontline architecture allows for extensions by customers without actually modifying the Frontline decoders.

In this exercise, we will be doing the following:

Appendix F: Extending Frontline Decoders TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 276

1. We insert code into the Frontline le_adv decoder to detect an advertisement of your service. We will
extract the base handle from the ‘additional data’ field of the ADV_IND PDU.

2. We insert code into the Frontline le_adv decoder to detect a CONN_REQ PDU that signals the beginning of
a conversation. If we have the base handle, we will manually insert UUID/handling mappings for use by the
ATT layer

3. We will insert code into the Frontline ATT decoder to detect and decode your service characteristics.

F.3.4 Procedure

Note: This procedure is fairly involved. Feel free to consult with Frontline Tech Support for
assistance.

1. Find the ‘\Frontline Test Equipment\My Decoders’ directory and create a file called ‘Custom Attributes
ATT.dh’. Copy into that file thefollowing code. Here we have added two new UUIDs to the Frontline ATT
decoder. The service UUID is informational only and will never reference any data to be decoded. The
Characteristic UUID contains additional fields and contains a call to a DecoderScript GROUP that will
decode that characteristic.

Custom Attributes ATT.dh

Table tiUUIDs APPENDS_ONLY GATT_UUIDS

{ 0x7ffffe00 "My Service" "My Service" }
{ 0x7ffffe02 "My Data" "My Data" 0 gMyData }

ENDTABLE

GROUP gMyData
{

FIELD myDataField (toEndOfLayer) (stringofhex) “my data”

}

2. Create a file in ‘\Frontline Test Equipment\My Decoders’ called ‘Custom Attributes LE_ADV.dh’. Copy into
that file the following code. Here we are decoding the ‘additional data’ in ADV_IND PDUs. Notice that we
are also appending table GATT_UUIDS in le_ADV. We do this so that the service UUID will be properly
decoded in both decoders. It just so happens that the tables in both decoders have the same name.

Custom Attributes LE_ADV.dh

Table tiUUIDs APPENDS_ONLY GATT_UUIDS

{ 0x7ffffe00 "My Service" "My Service" }

ENDTABLE

Table tMyServiceDataTypes APPENDS_ONLY tServiceDataTypes

{ 0xabcd "MySvc” "My Service" 0 gmyServiceADData } ENDTABLE

GROUP gmyServiceADData
{

TELEDYNE LECROY Appendix F: Extending Frontline Decoders

277 DecoderScript ReferenceManual and User Guide

FIELD BaseHandle (fixed 1) RETRIEVE (StorePersistentField "MyServiceBaseHandle")
(decimal) "Base Handle"

// any more additional data decoding you might need.

}

3. Create a file in ‘\Frontline Test Equipment\My Decoders’ ENDMAIN PATH LE_ADV.dh’. Copy into that file
the following code. Here we are checking the current frame to see if we should build our database. We
can’t do it in the ADV_IND because the Access_Address might not be right. We need a CONNECT_REQ for
what we want to do. So we check to see if we have had an ADV_IND with the service we want and if this
frame is a CONN_REQ.

ENDMAIN PATH LE_ADV.dh

// IF WE HAVE SEEN AN ADV_IND WITH THE BASE uuid, WE ARE GOOD TO GO....MAYBE

GROUP gCheckBuildDB if(persistentstaticexists " MyServiceBaseHandle ")
{

GROUP gDoBuildDB if(fieldis equalto 0x05 adv_type) // if this is a CONNECT_REQ
{

GROUP gBuildMyDataBase; // Go build our database. The code for that is in Custom
Attributes LE_ADV.dh

}

}

4. Back to ‘Custom Attributes LE_ADV.dh’ from step 2. Copy into the end of that file the following code. Here
is where we tell the ATT decoder about the mappings between handles and UUIDs. There are some
supporting values created by gSetupDBID . Then it is all just repeating the same three lines of decoderscript
over and over. Notice that the handle value is relative to the base handle so handle 1 (using our example)
would be stored as handle 11.

Add to: Custom Attributes LE_ADV.dh

GROUP gBuildMyDataBase
{

GROUP gSetupDBID;

// These next three lines get repeated for every UUID/handle mapping
// you want to make. Just change the storeinteger calls with the
// numbers you want. For each UUID/handle pair, call gStoreUUID;

FIELD SetOffset_1 (fixed 0) RETRIEVE(storeinteger 1) (hex) SUPPRESS_DETAIL Store
chHandle

FIELD SetUUID_1 (fixed 0) RETRIEVE(storeinteger 0x2803) (hex) SUPPRESS_DETAIL
Store ShortUUID

GROUP gStoreUUID;

}
GROUP gSetupDBID
{

Appendix F: Extending Frontline Decoders TELEDYNE LECROY

DecoderScript ReferenceManual and User Guide 278

FIELD GetSide (fixed 0) RETRIEVE(intraframefield "side") (hex) SUPPRESS_DETAIL store
side

FIELD MyBaseHandle (fixed 0) RETRIEVE(persistentfield " MyServiceBaseHandle") (hex)
SUPPRESS_DETAIL

// Create DBID which is Access Address + Role
FIELD sideIs0 (Fixed 0) if(fieldis equalto 0 side) RETRIEVE (storeinteger 1) (decimal)

SUPPRESS_DETAIL Store Role
FIELD sideIs1 (Fixed 0) if(fieldis equalto 1 side) RETRIEVE (storeinteger 0) (decimal)

SUPPRESS_DETAIL Store Role

FIELD LE_RequesterID (fixed 0) Retrieve(StoreField AccessAddress) also (shiftleft 8) also
(addfield role) also (shiftleft 16) (hex) DBID Store DBID

}

GROUP gStoreUUID
{

FIELD MyAbsoluteHandle (fixed 0) RETRIEVE(storefield chHandle) also (addfield
MyBaseHandle) (hex) SUPPRESS_DETAIL

FIELD gUniqueHandle (fixed 0) RETRIEVE(StoreField DBID) also (AddField
MyAbsoluteHandle) (hex) SUPPRESS_DETAIL

FIELD chUUIDShrtStore (fixed 0) PROCESSING(ATTSetUUIDMapping ATTMappings
gUniqueHandle ShortUUID) (Hex) SUPPRESS_DETAIL // Store mapping

}

TELEDYNE LECROY Appendix F: Extending Frontline Decoders

279 DecoderScript ReferenceManual and User Guide

Glossary
Boolean Method: A method used in an IF clause on
a FIELD or GROUP statement, or in a REPEAT UNTIL
clause on a GROUP statement. A Boolean Method
returns True (in which case the statement is
executed) or False (in which case the statement is
skipped).

BRANCH: A DecoderScript statement that causes
control to be transferred out of line to another
statement.

Branch Method: A method for use in a BRANCH
statement that determines the target of the branch.

Byte: In this manual the term "byte" is always used
in the sense of an 8-bit value (sometimes referred to
as an "octet").

Custom Method: A method written by a user to
serve a protocol-specific need. (cf Standard
Method.)

Data object: Short for Decoder Data Object.

Decode: A decode is the display of decoded
protocol frames provided by protocol analyzer
programs.

Decoder: A decoder is the program used to decode
a protocol. The decoder, written in DecoderScript
takes protocol layers as its input and outputs the
various bits and pieces needed that make up a
decode.

Decoder ID: A 32-bit number that uniquely identifies
a protocol within the protocol-analysis system.

DecoderScript: The language used to write
decoders.

Decoder Package: A decoder package comprises
everything necessary to carry a decoder from one
computer to another. The heart of the package is of
course the decoder itself. It may also contain a
Frame Recognizer, a Frame Transformer, and other
Custom Methods, etc.

Decoder Data Object: An object used to store
complex inter-frame data.

Drf: Data related flag. These are flags that convey
information about a byte of data. They are usually
errors, but may be other things depending on the
type of driver used to capture the data. For example,

with serial asynchronous products, there are three
Data related flags: parity, framing and UART
Overrun. For data captured with the ComProbe,
which uses the ComProbe's driver, there are five
Data related flags: USART Overrun, parity, framing,
CRC and underrun.

DWord: Short for "Double Word". Used in the PC
sense of a 32-bit (4-byte) quantity.

END_MAIN_PATH : A DecoderScript statement that
marks the end of the main thread of executable
statements in a decoder. Every decoder must
include an END_MAIN_PATH statement and control
should reach it coincidentally with the pointer
reaching the end of the layer.

Event: A protocol-analyzer capture consists of a
sequence of events. Such events include data of
course but also start-of-frame and end-of-frame
markers, error indications, records of signal changes,
etc.

Executable Statement: A DecoderScript statement
of a type that plays an active role in decoding fields.
Executable statements are BRANCH, FIELD, GROUP,
GROUP FIELD, and RESERVED.

Field: A field in a protocol layer.

FIELD: A DecoderScript statement that processes
(decodes) a single protocol field. (See also GROUP
FIELD.)

Format Method: A method used to format data or
otherwise create text for display in the decode.

Frame: The basic communication package in which
data is shipped.

Frame Recognizer: A program, actually a C++ class,
that scans captured data, recognizes where frames
begin and end, and inserts start-of-frame and end-
of-frame events.

Frame Transformer: A method that does whatever
is necessary to prepare a frame for further
processing. This could involve removing escape
characters, decrypting or decompressing the data.

GROUP: A DecoderScript statement that brackets a
group of other executable statements.

GROUP FIELD: A DecoderScript statement that both
decodes a protocol field and brackets a further set
of executable statements.

DecoderScript ReferenceManual and User Guide

- 280 -

Host Data Order: One of two systems by which
multi-byte numeric values are interpreted. The first
byte in the field is treated as the byte of highest
significance while the last byte is given the lowest
significance. (cf Network Data Order.)

Inter-frame Data: Data that is saved while decoding
one frame for use in interpreting subsequent
frames. Such data is saved with the
StorePersistentField or StoreIndexedPersistentField
methods, or, if it is more complex, with a Decoder
Data Object.

Intra-frame Data: Data that is saved while decoding
one layer for use in interpreting subsequent layers
within the same frame. Such data is saved with the
StoreIntraframeField method.

Layer: The portion of a frame governed by one
protocol.

Method: A subprogram that can be called from a
Decoder to process data in some way. We
distinguish two classes of method, Standard
Methods and Custom Methods. We also categorize
methods according to the context in which they are
used. Categories are: Boolean Methods, Branch
Methods, FormatMethods, Frame Transformers,
NextProtocol Methods, RetrievalMethods, Size
Methods, StartBit Methods and Verify Methods.

Ndrf: Non-data related flag. This is a two-byte bit-
encoded value containing information about the
state of the circuit that may or may not be related to
a data byte. A good example is control signal changes
in serial circuits, which can occur independent of a
data byte being received.

Network Data Order: One of two systems by which
multi-byte numeric values are interpreted. The first
byte in the field is treated as the byte of least
significance while the last byte is given the highest
significance. (cf Host Data Order.)

NextProtocol Method: A method that determines
information about the protocol used at the next
higher layer in a protocol stack.

Nibble: A 4-bit value.

Pointer: An internal pointer that points to the first
bit of the field being processed.

Qword: Short for "Quad Word". Used in the PC
sense of a 64-bit (8-byte) quantity.

RESERVED: A DecoderScript statement used to
define a reserved protocol field.

Size Method: A method used to determine the size
of a field.

Standard Method: A method supplied with the
protocol analyzer. (cf Custom Method.)

StartBit Method: A method used to determine a
position within the current layer where the
decoding of a field should start.

Stream: Data arrives in streams. Ethernet has only
one stream, while asynchronous serial has two
streams, named DTE and DCE. Knowing the number
of streams is important for frame recognizers and
inter-frame data methods that need to track data on
a per stream basis.

Verify Method: A method used either to verify a
frame check sequence or to validate the value in a
field.

Word: Used in the PC sense of a 16-bit (2-byte)
value.

- 281 -

DecoderScript ReferenceManual and User Guide

Index

$

$BOOKMARK 46

$DELTA 46

$FRAME_NUMBER 46

$LENGTH 46

$TIMESTAMP 46

@

@EACH_BYTE 108, 113

@GET_DATA_FROM_A_BYTE_ARRAY 127-128,
138

@OPTIMIZE_DATA 127-128, 138

@PUT_DATA_INTO_A_BYTE_ARRAY 127, 138

@SIGNAL_CHANGE 108, 113

@TIMER 108, 113

A

A Sample Method 72

ALSO 26, 52, 54-55, 71, 150, 164, 180, 197, 223-
226, 229, 231, 233, 246

ALSO FormatMethod 54

ALSO Verify Method 54

ALWAYS 39, 63

ALWAYS_ASK 63-64, 180

ASCII 48

ASK_IF_NOT_DEFINED 64

Autotraversal 4, 38-39

B

Binary 70

Binary Pane 53

Boolean 75, 102

Boolean Method 26, 60, 63, 75, 95, 97, 181, 243

BooleanMethod 51, 59, 62, 69

braces 18-19

BRANCH 14, 28-31, 34, 47-48, 58, 62, 65, 67, 69,
139, 149, 166, 170, 180, 195, 231

return value 69

byte-stuffing 44

BYTE_STREAM_FRAMER 13, 43-45, 139, 170,
180

C

CFA Maker 11

character escaping 44

Character Pane 53

Checksum/CRC Methods 71

comment 13, 18, 33, 94

comment | Documentation.DecoderScriptPDF |
[10] 18

conditional clause 51

COUNT 126, 149, 171, 180, 182, 237

CRC 71

CStaticStorage 128, 130, 132, 144-146

CurrentIDMatches 60

D

data decoder objects

variable

CArrayabStatic 127

CStringszIniFile 127

eFdNotifyEventReasonsnerReason 127-
128

Decimal 70

DECODE 9, 14, 17-18, 20-23, 30, 33, 46, 67, 114,
152, 159, 169, 175, 180

Decode Pane 21, 51, 53-54, 58

decoder 1, 18, 37

encrypted 37, 41

DecoderScript ReferenceManual and User Guide

- 282 -

Header Section 12

ID 18, 37-38

plain text 37

Publisher ID 37

required statements 13

Table Section 14

DecoderScript 1

DecoderScript Sample Methods.mth 69

decompression 44

decryption 44

detail_tag 51, 60

use in GROUPS 60

E

ELSE_SKIP 51-52

END_END_MAIN_PATH 14, 21, 29-30, 34, 43,
65

END_END_MAIN_PATH |
Documentation.DecoderScriptPDF |
[25] 20

END_MAIN_PATH 17, 31, 58, 180

ENDTABLE 14, 22-23, 26, 29, 34, 47-48, 180

EqualTo 26-27, 52, 54

Event Pane 53

EVENT_HANDLER 127

events 12

executable statements 14, 48

F

Ficticious Protocol 15, 17, 21, 23, 30, 33

FIELD 14, 17-18, 20-22, 28, 31-32, 34, 48-51, 62,
65, 69, 148, 150, 180

field_name 50, 58

Order of Statement Processing 57

SizeMethod 50

Field-Validation 72

FieldIs 52, 54

Filters 40

FORMAT 28

FormatMethod 50-51, 69

FP.cfa 15, See also CFA Maker

FP.dec 15, See also Ficticious Protocol

frame 12

Frame Display 51, 54, 69

frame recognition 5

Frame Recognizer 5, 41, 45, 105, 108-109, 126,
131

included with the Protocol Analyzer 114

Names

HalfDuplex 114

ParityError 114

SignalChange 114

TimeGap 114

Frame Transformer 5, 44, 96, 117-119

FRAME_AFTER_DECODING 13, 44

FRAME_BEFORE_DECODING 13, 44-45

FRM 123, 130

FromEnd 51, 56

FromField 52, 147

FromTable 28

G

GreaterThan 26

GreaterThanOrEqualTo 26

GROUP 14, 18, 24-28, 30-32, 35, 48, 58, 62, 69,
148, 181

GROUP LABEL 25-28

GROUP FIELD 14, 31-33, 36, 48, 61-62, 69, 148

- 283 -

DecoderScript ReferenceManual and User Guide

GROUPFIELDS 26

H

Header Section 12

id number 13

protocol name 13

Hex 70

Hexadecimal 13, 48

protocol ID 13

HOST_DATA_ORDER 13, 55, 181

I

id number 13

IF 26, 35, 51-52, 54, 69

IN_COLLAPSED 54, 181

IN_SUMMARY 14, 21-22, 27, 29, 34, 46, 52, 54,
58, 181

IN_SUMMARY |
Documentation.DecoderScriptPDF |
[8] 21

IN_SUMMARY_ONLY 54, 181

INCLUDE 14, 48, 65

INCLUDE_IF_EXISTS 65

INFO 55

Inter-Frame Data 66

Intra-Frame Data 65

IntraframeField 66

IP Address 70

K

keyword 18

L

LABEL 26

Layer 3

LessThan 26

LessThanOrEqualTo 26

M

MARGIN_TEXT 55, 181

Methods

Boolean 95, 181-183

Branch 69

invocation 19

naming 18

Move 33, 51

MoveToField 51

N

name/string 18

NETWORK_DATA_ORDER 13, 55, 181

NEVER_ASK 64

NEXT_PROTOCOL 13, 40, 44, 70

Methods 70

Next_PROTOCOL |
Documentation.DecoderScriptPDF |
[20] 39

NEXT_PROTOCOL_OFFSET 13, 44, 70

NEXT_PROTOCOL_SIZE 13, 44, 70, 100

NO_MOVE 30-35, 55, 58, 182

NOT 55

NotEqualTo 26

number 18

O

Octal 70

Other Term

Subterm 49, 53, 70, 151, 171, 234

P

PARAMETER 14, 48, 63

default_vlaue 64

field_name 63

DecoderScript ReferenceManual and User Guide

- 284 -

user_prompt 63

payload 4

PAYLOAD_IS_BYTE_STREAM 13, 43-45, 98

Personality Files 37, 41, 70

Filters Section 40

Port Assignments Section 40

Predefined Stacks Section 39

Rules Section 38

Port Assignments 40

POSTPROCESSING 13, 45, 100, 131

Predefined Stacks 39

PREPROCESSING 13, 45, 100

PRINT_IF 52, 58, 69

PROCESSING 53, 100

Processing Clause 53

Protocol

header 4

ID 13, 44

name 13

PUT_DATA_INTO_A_BYTE_ARRAY |
Documentation.DecoderScriptPDF |
[20] 128

R

Radix Pane 53

RECOGNIZER 13, 45, 105

REPEAT 59, 148, 180-183

COUNT 59, 71

SIZE 59, 71

TRUNCATED_FIELD_OK 60

UNTIL 60, 69

ReplaceWithExtraData 57

RESERVED 14, 31-32, 36, 48, 58, 182

RESERVED | Documentation.DecoderScriptPDF |
[18] 31

RETRIEVE 26, 52-53, 65-67, 70-71, 148, 180,
182

RetrievalMethod 52, 71

Retrieve Clause 52, 131

Rules Section 38

S

Size 30, 32

SIZE 100-101, 182

SizeMethod 50-51, 58, 61, 71

Fixed 50, 71

FromField 50, 71

Standard Methods 69

START_BIT 32-33, 51, 55, 71, 101, 182

StartBit 31-33, 51

statements 18

BRANCH 28

conditional 26

IF 26, 34

STORE 56, 65, 71, 182

Store-Clause 56

StoreIntraframeField 66

Strings

using double quotes 18, 169

Summary Pane 47, 51, 53-54, 58

SUMMARY_COLUMNS 13, 22, 46-47, 54

SUPPRESS_DETAIL 30-31, 34-35, 51, 54, 58, 150,
183

SUPPRESS_IF_VERIFIED 56, 183

T

TABLE 14, 22-23, 26, 29, 33-34, 47, 183

@ symbol 48

- 285 -

DecoderScript ReferenceManual and User Guide

Table Section 14

Tag-Clause 54

TagMethod 71

ThisLayerLength 44

Time 70

Timestamp 12

U

UltraEdit 12

UNTIL 182-183

V

variable 99-100, 131, 147, 150

vendor specific decoder 1

VERIFY 14, 20-21, 29, 31, 34, 58, 71, 147, 180

VerifyMethod 52, 55, 71, 75

Verify-Clause 55, 64

DecoderScript ReferenceManual and User Guide

- 286 -

- 287 -

DecoderScript ReferenceManual and User Guide

	Chapter 1 DecoderScript Overview
	Chapter 2 How the Decoder Processes Captured Data
	2.1 Protocol Layers
	2.2 Autotraversal
	2.3 The Processing Sequence

	Chapter 3 Structure of a Decoder
	3.1 What You Need
	3.2 Basic Structure
	3.2.1 The Header Section
	3.2.2 The Reference Section
	3.2.3 DECODE
	3.2.4 The Table Section
	3.2.5 The Executable Section

	3.3 Fictitious Protocol
	3.3.1 The Basic Structure of a Decoder
	3.3.2 The FIELD Statement

	3.4 General Syntax Rules
	3.4.1 Standard Methods
	3.4.2 Verify Field Values
	3.4.3 Creating Summary Pane Columns Using IN_SUMMARY
	3.4.4 Tables
	3.4.5 The Group Statement
	3.4.6 Conditional Statements
	3.4.7 Branch Statement
	3.4.8 SUPPRESS_DETAIL and NO_MOVE
	3.4.9 The GROUP FIELD and RESERVED Statements
	3.4.10 START_BIT
	3.4.11 Comments

	3.5 Finished Fictitious Protocol Decoder

	Chapter 4 Putting It All Together
	4.1 Decoder IDs
	4.1.1 Encrypted Decoders
	4.1.2 Plain Text Decoders

	4.2 [ProtocolName].personaility Files
	4.2.1 Rules
	4.2.2 Predefined Stacks
	4.2.3 Port Assignments
	4.2.4 Filters

	4.3 What to Send to End Users

	Chapter 5 DecoderScript Reference
	5.1 SUPPORTED_SPEC_VERSION
	5.2 BYTE_STREAM_FRAMER
	5.3 FRAME_AFTER_DECODING
	5.4 FRAME_BEFORE_DECODING
	5.5 NEXT_PROTOCOL
	5.6 NEXT_PROTOCOL_SIZE
	5.7 NEXT_PROTOCOL_OFFSET
	5.8 PAYLOAD_IS_BYTE_STREAM
	5.9 PREPROCESSING
	5.10 POSTPROCESSING
	5.11 RECOGNIZER
	5.12 SUMMARY_COLUMNS
	5.13 FIELD
	5.13.1 field_name
	5.13.2 SizeMethod
	5.13.3 FormatMethod
	5.13.4 detail_tag
	5.13.5 START_BIT, StartBitMethod
	5.13.6 Conditional Clause
	5.13.7 <Retrieve-Clause>
	5.13.8 <Processing-Clause>
	5.13.9 ALSO Format Method
	5.13.10 ALSO Verify Method
	5.13.11 IN_SUMMARY summary_tag Column Width
	5.13.12 SUPRESS_DETAIL
	5.13.13 <Tag-Clause>
	5.13.14 MARGIN_TEXT Format Method
	5.13.15 INFO
	5.13.16 NO_MOVE
	5.13.17 HOST_DATA_ORDER | NETWORK_DATA_ORDER
	5.13.18 <Verify-Clause>
	5.13.19 <Store-Clause>

	5.14 Field Order of Statement Processing
	5.15 FIELD field_name;
	5.16 RESERVED
	5.17 GROUP
	5.17.1 REPEAT COUNT | SIZE | TRUNCATED_FIELD_OK | UNTIL Method
	5.17.2 Detail Tag
	5.17.3 GROUP FIELD

	5.18 BRANCH
	5.19 PARAMETER
	5.20 INCLUDE
	5.21 INCLUDE_IF_EXISTS
	5.22 END_MAIN_PATH
	5.23 Intra-Frame and Inter-Frame Data
	5.23.1 Intra-Frame Data
	5.23.2 Inter-Frame Data

	Chapter 6 Methods
	6.1 Boolean Methods
	6.2 BranchMethods
	6.3 Format Methods
	6.4 NextProtocol Methods
	6.4.1 NextProtocol
	6.4.2 NextProtocolOffset
	6.4.3 NextProtocolSize

	6.5 RetrievalMethods
	6.6 Size Methods
	6.7 StartBit Methods
	6.8 Tag Methods
	6.9 Verify Methods
	6.9.1 Checksum/CRC Methods
	6.9.2 Field-Validation Methods

	6.10 A Method Sample
	6.11 The Method Context
	6.12 Notation for Constant/Variable Names
	6.13 CString and CArray Objects
	6.14 Method Inputs
	6.14.1 Method Input Definitions
	6.14.2 Method Input by Method Type
	6.14.2.1 Boolean Method Inputs
	6.14.2.2 Branch Method Inputs
	6.14.2.3 ByteStreamFramer Method Inputs
	6.14.2.4 Format Method Inputs
	6.14.2.5 FrameTransformer Method Inputs
	6.14.2.6 NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size)
	6.14.2.7 PostProcessing Methods Inputs
	6.14.2.8 PreProcess Method Inputs
	6.14.2.9 Processing Method Inputs
	6.14.2.10 Retrieval Method Inputs
	6.14.2.11 Size Method Inputs
	6.14.2.12 StartBit Method Inputs
	6.14.2.13 Verify Method Inputs

	6.14.3 Redundancies in Input Values
	6.14.4 Truncated Frame
	6.14.5 The Current Field

	6.15 Other Resources
	6.15.1 Miscellaneous Functions

	6.16 Defining A Method
	6.16.1 ParameterTypes

	6.17 Output Values
	6.18 Method Contexts and Examples
	6.18.1 Boolean Methods
	6.18.2 Branch Methods
	6.18.3 Byte Stream Framer Methods
	6.18.4 Format Methods
	6.18.5 NextProtocol Methods
	6.18.6 NextProtocolOffset and NextProtocolSize Methods
	6.18.7 PREPROCESSING, PROCESSING, and POSTPROCESSING Methods
	6.18.8 Retrieval Methods
	6.18.9 Size Methods
	6.18.10 StartBit Methods
	6.18.11 Tag Methods
	6.18.12 Verify Methods

	6.19 Programming Exceptions
	6.20 Common
	6.20.1 Loading External Data Into Common

	6.21 Where Do Custom Methods Reside?
	6.22 How Does a Custom Method Get Compiled?

	Chapter 7 Frame Recognizers
	7.1 Recognizer Syntax
	7.1.1 Input Values
	7.1.2 Return Values
	7.1.3 Parameters
	7.1.4 Error Processing

	7.2 Efficiency
	7.3 The Simplest Recognizer: Half Duplex
	7.4 A Frame Recognizer for FP
	7.5 Handling Signal-Change Events
	7.6 Handling Error (DRF, or Data Related Flag) Events
	7.7 Handling Timer Events
	7.8 Loose Ends
	7.9 Frame Recognizers Included with Protocol Analyzer

	Chapter 8 Frame Transformers
	8.1 A Frame Transformer for FP
	8.2 Output Variables
	8.2.1 Examples of ausLowIndex and ausHighIndex

	Chapter 9 Decoder Data Objects
	9.1 Understanding How a Decoder Process Affects Data Objects
	9.1.1 Compilation Phase
	9.1.2 Reconstruction Phase
	9.1.3 Implications of Phases
	9.1.4 Ways to Share Data at Different Points of the Decoding Process

	9.2 Decoder Data Object Syntax
	9.2.1 Variables Available to Data Decoder Objects

	9.3 Using Decoder Data Objects for per-Frame Data
	9.3.1 A class to make saving and retrieving easier and more compact

	9.4 Error Processing
	9.5 Writing Methods that Use Decoder Data Objects
	9.5.1 Multiple Statics and Constants

	9.6 A Simple Example
	9.7 A Complex Example
	9.8 A Primer on FRM File
	9.8.1 Compilation
	9.8.2 Reconstruction
	9.8.3 So...When Are Methods Called?
	9.8.4 What Phase Am I In?
	9.8.5 Protocol Example
	9.8.6 Some Techniques

	Chapter 10 Tips and Tricks
	10.1 Approach to Decoding a Field
	10.2 Empty Frames
	10.3 Red Items in the Summary Pane
	10.4 How Field Values are Stored
	10.5 A Subtle Difference Between GROUP and GROUP FIELD
	10.6 Large Fields
	10.7 Error Correcting in GROUP REPEAT Constructions
	10.8 How to Implement a Repeating Counter
	10.9 Recalcitrant Summary Columns
	10.10 Overwriting Summay-Pane Column Entries
	10.11 Readable Protocols
	10.12 Using Variables
	10.13 Storing Data
	10.14 Storing Data Into Decoder Data Objects
	10.15 Adding on to Frontline Decoders
	10.16 Decoder Event Logging
	10.16.1 Handling 128-bit UUIDs

	Chapter 11 One Complete Example
	Chapter 12 A Formal Grammar for Decoder Scripts
	Appendix A: Decoder Summary
	Appendix B: Using Protocol Analyzer wtih the Option for Creating Decoders
	B.1 Reload Decoders
	B.2 Building Methods
	B.3 How to Insert Fictitious Protocol into a Fictitious Product

	Appendix C: Key Word List
	Appendix D: Creating Custom Frame Recognizer
	Appendix E: Method Reference
	E.1 Group Boolean
	E.1.1 Check_CrcCCITTrevDataBytes
	E.1.2 CompareFields
	E.1.3 CurrentDataMatches
	E.1.4 DCE
	E.1.5 DTE
	E.1.6 FieldIs
	E.1.7 FieldIsBetween
	E.1.8 FieldLengthIs
	E.1.9 IndexedPersistentStaticExists
	E.1.10 IntraframeStaticExists
	E.1.11 IsInTable
	E.1.12 IsOdd
	E.1.13 IsProbablyAtType
	E.1.14 MatchTableData
	E.1.15 MoreBytes
	E.1.16 MoreBytesInSegement
	E.1.17 MoreBytesToDecode

	E.2 Group: Branch
	E.2.1 DTEorDCE
	E.2.2 FromTable
	E.2.3 PersistentStaticExists

	E.3 Group: FORMAT
	E.3.1 Binary
	E.3.2 Constant
	E.3.3 Decimal
	E.3.4 DecimalWithFieldLabel
	E.3.5 DOSDate
	E.3.6 DOSTime
	E.3.7 Double
	E.3.8 Float
	E.3.9 Hex
	E.3.10 IPAddress
	E.3.11 MacAddress
	E.3.12 mdp11703
	E.3.13 MillisecondsFrom1970
	E.3.14 NetBiosName
	E.3.15 Octal
	E.3.16 OtherField
	E.3.17 Scale
	E.3.18 SecondsFrom1970
	E.3.19 StringOfHex
	E.3.20 StringOfAscii
	E.3.21 StringOfBCD
	E.3.22 StringOfBinary
	E.3.23 StringOfDecimal
	E.3.24 StringOfUnicode
	E.3.25 StringOfUTF8
	E.3.26 Table
	E.3.27 UUID

	E.4 Group: FRAME_TRANSFORMER
	E.4.1 RealignOnByteBoundary
	E.4.2 StripDoubledChar

	E.5 Group: NEXT_PROTOCOL
	E.5.1 FromField
	E.5.2 FromPortAssignment
	E.5.3 IsAlways

	E.6 Group: NEXT_PROTOCOL_SIZE
	E.6.1 FromField
	E.6.2 FromFieldIfLessThan
	E.6.3 OffsetToEnd
	E.6.4 OffsetToEndTakesFieldParam
	E.6.5 ThisLayerLength

	E.7 Group: POSTPROCESSING
	E.8 Group: PREPROCESSING
	E.8.1 InitField

	E.9 Group: PROCESSING
	E.9.1 AddPortAssignment

	E.10 Group: RETRIEVING_DATA
	E.10.1 AddField
	E.10.2 AddFieldToField
	E.10.3 AddFieldToInteger
	E.10.4 AddInteger
	E.10.5 AddIntegerToField
	E.10.6 AndMask
	E.10.7 BitOffset
	E.10.8 ClearPersistentField
	E.10.9 DivideField
	E.10.10 DivideFieldByField
	E.10.11 DivideFieldByInteger
	E.10.12 DivideInteger
	E.10.13 DivideIntegerByField
	E.10.14 FromFlag
	E.10.15 FromFlags
	E.10.16 IndexedPersistentField
	E.10.17 IndexedPersistentFieldAndDelete
	E.10.18 IntraframeField
	E.10.19 ModuloInteger
	E.10.20 ModuloField
	E.10.21 ModuloFieldByField
	E.10.22 ModuloFieldByInterger
	E.10.23 ModuloIntergerByField
	E.10.24 MultiplyField
	E.10.25 MultiplyFieldByField
	E.10.26 MultiplyFieldByInteger
	E.10.27 MultiplyInteger
	E.10.28 MultipyIntergerByField
	E.10.29 OrMask
	E.10.30 PersistentField
	E.10.31 ReplaceWithExtraData
	E.10.32 ShiftLeft
	E.10.33 ShiftRight
	E.10.34 SignExtension
	E.10.35 SplitField
	E.10.36 StoreField
	E.10.37 StoreIndexedPersistentField
	E.10.38 StoreInteger
	E.10.39 StoreIntraframeField
	E.10.40 StorePersistentField
	E.10.41 SubtractField
	E.10.42 SubtractFieldMinusField
	E.10.43 SubtractFieldMinusInteger
	E.10.44 SubtractInterger
	E.10.45 SubtractIntegerMinusField

	E.11 Group: SIZE
	E.11.1 ArrayOf
	E.11.2 Bit
	E.11.3 Byte
	E.11.4 Fixed
	E.11.5 FixedUpTo
	E.11.6 FromExtraData
	E.11.7 FromField
	E.11.8 MinFieldOrEndOfLayer
	E.11.9 OddTerminated
	E.11.10 OneToken
	E.11.11 RelativeFromField
	E.11.12 String
	E.11.13 ToEndOfLayer
	E.11.14 ToTerminatingValue
	E.11.15 UnicodeString
	E.11.16 UpTo
	E.11.17 Zero

	E.12 Group: START_BIT
	E.12.1 FromEnd
	E.12.2 FromEndSizeFromField
	E.12.3 FromStart
	E.12.4 Move
	E.12.5 MoveAbsoluteFromField
	E.12.6 MoveRelativeFromField
	E.12.7 MoveToField
	E.12.8 MoveToFieldPlusOffset
	E.12.9 NextByteBoundary
	E.12.10 NextWordBoundary
	E.12.11 PreviousByteBoundary

	E.13 Group: TAG
	E.13.1 TAG

	E.14 Group: VERIFY
	E.14.1 Check_Crc802153MacHcs
	E.14.2 Check_CrcCCITTrevDataBytes
	E.14.3 Check_CrcCRC16
	E.14.4 Check_CrcCRC16Rev
	E.14.5 Check_CrcCRC16RevAndInvert
	E.14.6 Check_CrcCRC32
	E.14.7 Check_CrcHDLC
	E.14.8 Check_CrcHDLCerr
	E.14.9 Check_CrcLRC
	E.14.10 Check_CrcModBus
	E.14.11 Check_CrcModBus_LRC
	E.14.12 Check_CrcSum
	E.14.13 Check_CrcSum1Comp
	E.14.14 Check_CrcSum2Comp
	E.14.15 Check_CrcXOR1Comp
	E.14.16 Check_CrcXOR2Comp
	E.14.17 CompareFields
	E.14.18 Fail
	E.14.19 FieldIs
	E.14.20 FieldIsBetween
	E.14.21 FieldLengthIs
	E.14.22 HdlcFcs
	E.14.23 IsInTable
	E.14.24 IsLengthOfLayer
	E.14.25 MatchTableData
	E.14.26 TcpChecksum

	Appendix F: Extending Frontline Decoders
	F.1 Extending Frontline Products
	F.1.1 Extending Frontline Products
	F.1.2 Step 1: Open the Hello Bluetooth® capture file in ComProbe analyzer
	F.1.3 Step 2: Remap the handling of the Hello Bluetooth® Service UUID
	F.1.4 Step 3: Remap the handling of the User Name UUID
	F.1.5 Where can we go from here?

	F.2 Handling 128-bit UUIDs
	F.3 Case Study: Extending Frontline ATT Decoder for a Fixed Configuration Service
	F.3.1 Background
	F.3.2 Problem:
	F.3.3 Solution:
	F.3.4 Procedure

	Bookmarks
	Protocol
	 Figure 2.2 - Frame Processing Flow Chart
	 Figure 3.1 - Frame Display
	 Table 3.1 - Contents of Frame Display
	 Table 3.2 - Command Code Data Format
	 Table 3.3 - Response Code Data Format
	 Table 3.4 - Response Bit Flag
	FrameDisplay
	 Figure 3.3 - Set Actuator Command
	 Figure 3.4 - How Errors Are Displayed
	 Figure 3.5 - Illustration of Master Sending Twice
	HEX
	FromTable
	UnlabeledLabeledGroup
	 Figure 3.9 - GROUP FIELD Collapsed and Expanded
	 Table 5.1 - Data Length for Field Values
	GROUPwithdetailtag
	GROUPwithoutdetailtag
	BitFlagsWithGROUPFILED
	 Figure 5.4 - GROUP FIELD from Table
	 Table 6.1 - NextProtocol Methods
	abFieldhasData
	abytLayer
	ai64Field
	aisizbitField
	bCurrentFiledHasData
	bHostDataOrder
	bIsSummary
	bNot
	i64CurrentField
	i64FieldValue
	iDrf
	iFieldSize
	ifrmofsbitLayerEnd
	ifrmofsbitLayerStart
	ifrmofsbytlayerstart
	iofsbitCurrentPosition
	iofsbitCurrentField
	iofsbitFieldStart
	iofsbytCurrentPosition
	inbytAvailableLayer
	inbytFullLayer
	inbytLeftInAvailableLayer
	inbytLeftInFullLayer
	inbytTruncated
	isizbitCurrentField
	iStream
	evnFrameNumber
	 Table 6.2 - Boolean Method Inputs
	 Table 6.3 - Branch Method Inputs
	 Table 6.4 - ByteStreamFramer Method Inputs
	 Table 6.5 - Format Method Inputs
	 Table 6.6 - FrameTransformer Method Inputs
	 Table 6.7 - NextProtocols Method Inputs (NextProtocol, NextProtocol_Offset, NextProtocol_Size)
	 Table 6.8 - PostProcessing Methods Inputs
	 Table 6.9 - PreProcessing Methods Inputs
	 Table 6.10 - Processing Method Inputs
	 Table 6.11 - Retrieval Method Inputs
	 Table 6.12 - Size Method Inputs
	 Table 6.13 - StartBit Method Inputs
	 Table 6.14 - Verify Method Inputs
	 Table 6.15 - General Utility Functions
	 Table 6.16 - Method Paramete Types
	 Table 6.17 - Output Variable for Each Method Type
	 Table 7.1 - nerReason enum
	 Table 7.2 - Input Values
	 Table 7.3 - Return Values
	 Table 7.4 - ComProbe Driver
	 Table 7.5 - Asynchronous Serial Driver
	 Table 7.6 - RS232 ComProbe II Driver
	 Table 7.7 - Recognizer Names
	 Table 9.1 - Variables Available
	 Table 9.2 - nerReason enum
	 Table 9.3 - Method Type and Phase of Use
	 Table 10.1 - Protocols That Accept Custom Attributes
	 Table 10.2 - Event Logging Results
	 Table C.1 - Key Words with Descriptions
	FromTable
	Handling128bitUUIDw

